Skip to main content
Log in

Concordance between two linear orders: The Spearman and Kendall coefficients revisited

  • Published:
Journal of Classification Aims and scope Submit manuscript

Abstract

This paper discusses the two classic measures of concordance between two linear orders L and L′, the Kendall tau and the Spearman rho, equivalently, the Kendall and Spearman distances between such orders. We give an expression for ρ(L,L′)−τ(L,L′) as a function of the parameters of the partial order L∪L′, which allows the determination of extremal values for this difference and an investigation of when tau and rho are equal. This expression for ρ(L,L′)−τ(L,L′) is derived from a relation between the Kendall and Spearman distances between linear orders that is equivalent to both the Guilbaud (1980) formula linking rho, tau, and a third coefficient sigma, and Daniels’s (1950) inequality. We also prove an apparently new monotonicity property of rho. In the conclusion we point out possible extensions and add general historical comments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AIGNER, M. (1979), Combinatorial Theory, Berlin: Springer-Verlag.

    MATH  Google Scholar 

  • BARBUT, M., and MONJARDET, B. (1970), Ordre et Classification, Algèbre et Combinatoire, Paris: Hachette.

    MATH  Google Scholar 

  • BARTHELÉMY, J.P., and MONJARDET, B. (1981), “The Median Procedure in Cluster Analysis and Social Choice Theory,” Mathematical Social Sciences, 1, 235–268.

    Article  MATH  Google Scholar 

  • CRITCHLOW, D.E. (1985), “Metric Methods for Analyzing Partially Ranked Data,” Lectures Notes in Statistics, 34, Berlin: Springer-Verlag.

    MATH  Google Scholar 

  • DANIELS, H.E. (1948), “A Property of Rank Correlations,” Biometrika, 35, 416–417.

    MATH  MathSciNet  Google Scholar 

  • DANIELS, H.E. (1950), “Rank Correlation and Population Models,” Journal of the Royal Statistical Society, B, 12, 171–181.

    MATH  MathSciNet  Google Scholar 

  • DEGENNE, A. (1972), Techniques Ordinales en Analyse des Données: Statistique, Paris: Hachette.

    MATH  Google Scholar 

  • DIACONIS, P. (1988), Group Representations in Probability and Statistics. Hayward: Institute of Mathematical Statistics.

    MATH  Google Scholar 

  • DIACONIS, P., and GRAHAM R.L. (1977), “Spearman’s Footrule as a Measure of Disarray,” Journal of the Royal Statistical Society, B, 39, 262–268.12, 171–181.

    MATH  MathSciNet  Google Scholar 

  • DURBIN, J., and STUART, A. (1951), “Inversions and Rank Correlation Coefficients,” Journal of the Royal Statistical Society, B, 13, 303–309.

    MATH  MathSciNet  Google Scholar 

  • FISHBURN, P.C. (1985). Interval Orders and Interval Graphs. A Study of Partially Ordered Sets. New York: Wiley.

    MATH  Google Scholar 

  • FLIGNER, M. A., and VERDUCCI, J.S. Eds. (1993), “Probability Models and Statistical Analyses for Ranking Data,” Lectures Notes in Statistics, 80, Berlin: Springer Verlag.

    MATH  Google Scholar 

  • GIAKOUMAKIS, V., and MONJARDET, B. (1987a), “Coefficients d’accord entre deux préordres totaux,” Statistique et Analyse des Données, 1–2, 46–79.

    MathSciNet  Google Scholar 

  • GIAKOUMAKIS, V., and MONJARDET, B. (1987b), “Coefficients d’accord entre deux préordres totaux; comparaison ordinale des coefficients,” Mathématiques et Sciences Humaines, 98, 69–87.

    MATH  MathSciNet  Google Scholar 

  • GIBBONS, J.D. (1971), Nonparametric Statistical Inference, New York: Mc Graw-Hill.

    MATH  Google Scholar 

  • GUILBAUD, G.Th. (1980), “Relation entre les deux coefficients de corrélation de rangs,” Mathématiques et Sciences Humaines, 72, 45–59.

    Google Scholar 

  • GRIFFIN, H.D. (1958), “Graphical Computation of tau as a Coefficient of Disarray,” Journal of the American Statistical Association, 53, 441–447.

    Article  MATH  Google Scholar 

  • KNUTH, D.E. (1973), Sorting and Searching, The Art of Computer Programming, Vol.3, Reading MA: Addison-Wesley.

    Google Scholar 

  • KENDALL, M.G. (1970): Rank Correlation Methods, New York: Hafner (first edition, 1948).

    MATH  Google Scholar 

  • KRUSKAL, W.H. (1958), “Ordinal Measures of Association,” Journal of the American Statistical Association, 53, 814–861.

    Article  MATH  MathSciNet  Google Scholar 

  • LE CONTE DE POLY-BARBUT, C. (1988), “Sur les graphes admettant le nombre maximum de sous-graphes à trois sommets et deux arêtes et les paires d’ordres totaux qui maximisent |ρ−τ|,” European Journal of Combinatorics, 9, 575–579.

    MATH  MathSciNet  Google Scholar 

  • MERRIL, S. (1984), “A Comparison of Efficiency of Multicandidate Systems,” American Journal of Political Science, 23, 28–49.

    Google Scholar 

  • MOHRING, R.H. (1984), “Algorithmic Aspects of Comparability Graphs and Interval Graphs,” in Graphs and Orders, Ed., I. Rival, Dordrecht: D. Reidel, 41–101.

    Google Scholar 

  • MOHRING, R.H. (1989), “Computationally Tractable Classes of Ordered Sets,” in Algorithms and Orders, Ed., I. Rival. Dordrecht: D. Reidel, 283–306.

    Google Scholar 

  • MONJARDET, B. (1985a), “Concordance et consensus d’ordres totaux: les coefficients K et W,” Revue de Statistique Appliquée, 33, 2, 55–87.

    MATH  MathSciNet  Google Scholar 

  • MONJARDET, B. (1985b), “A Use for Frequently Rediscovering a Concept,” Order, 1, 415–417.

    Article  MATH  MathSciNet  Google Scholar 

  • MONJARDET, B. (1990), “Sur diverses formes de la ‘régle de Condorcet’ d’agrégation des préférences,” Mathématiques Informatique et Sciences Humaines, 111, 61–71.

    MATH  MathSciNet  Google Scholar 

  • MONJARDET, B., and LE CONTE DE POLY-BARBUT, C. (1986), “Valeurs extrêmales de la différence des deux coefficients d’accord ρ et τ entre ordres totaux,” Comptes Rendus Académie des Sciences Paris, t. 303, Série I, n o 10, 483–486.

    Google Scholar 

  • MORAN, P.A.P., WHITFIELD, J.W., and DANIELS, H.E. (1950), “Symposium on Ranking Methods,” Journal of the Royal Statistical Society B, 12, 153–191.

    MATH  Google Scholar 

  • RODRIGUES, O. (1839), “Notes sur les inversions ou dérangements produits dans les permutations,” Journal de Mathématiques pures et appliquées, Série, I, 4, 236–240.

    Google Scholar 

  • ROBERTS, F. (1979), Measurement Theory, Reading MA: Addison-Wesley.

    MATH  Google Scholar 

  • SAVAGE, I.R. (1964), “Contributions to the Theory of Rank Order Statistics: Applications of Lattice Theory,” Review of the International Statistical Institute, 32, 52–64.

    Article  MATH  MathSciNet  Google Scholar 

  • SCHRIEVER, B.F. (1987), “Monotonicity of Rank Statistics in Some Non-parametric Testing Problems,” Statistica Neerlandica, 41, 99–109.

    Article  MATH  MathSciNet  Google Scholar 

  • TROTTER, W.T. (1992), Combinatorics and Partially Ordered Sets: Dimension Theory, Baltimore: John Hopkins University Press.

    MATH  Google Scholar 

  • YOUNG, H.P., (1988), “Condorcet’s Theory of Voting,” American Political Science Review, 82, 1231–1244.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Monjardet.

Additional information

The author wrote this paper during a sabbatical leave spent at the GERAD and at the Département de Mathématiques et de Statistique de l’Université de Montréal. He is glad to thank them for their kind hospitality and support. He thanks also the referees, P. Hansen and P. Arabie for their useful remarks and important editorial help on the first versions of this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monjardet, B. Concordance between two linear orders: The Spearman and Kendall coefficients revisited. Journal of Classification 14, 269–295 (1997). https://doi.org/10.1007/s003579900013

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003579900013

Keywords

Navigation