Skip to main content
Log in

Large-scale volumetric flow measurement in a pure thermal plume by dense tracking of helium-filled soap bubbles

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

We present a spatially and temporally highly resolved flow measurement covering a large volume (~0.6 m3) in a pure thermal plume in air. The thermal plume develops above an extended heat source and is characterized by moderate velocities (U ~ 0.35 m/s) with a Reynolds number of \(\text{Re} \sim 500\) and a Rayleigh number of \({\text{Ra}}\sim 10^{6}\). We demonstrate the requirements and capabilities of the measurement equipment and the particle tracking approach to be able to probe measurement volumes up to and beyond one cubic meter. The use of large tracer particles (300 μm), helium-filled soap bubbles (HFSBs), is crucial and yields high particle image quality over large-volume depths when illuminated with arrays of pulsed high-power LEDs. The experimental limitations of the HFSBs—their limited lifetime and their intensity loss over time—are quantified. The HFSBs’ uniform particle images allows an accurate reconstruction of the flow using Shake-The-Box particle tracking with high particle concentrations up to 0.1 particles per pixel. This enables tracking of up to 275,000 HFSBs simultaneously. After interpolating the scattered data onto a regular grid with a Navier–Stokes regularization, the velocity field of the thermal plume reveals a multitude of vortices with a smooth temporal evolution and a remarkable coherence in time (see animation, supplementary data). Acceleration fields are also derived from interpolated particle tracks and complement the flow measurement. Additionally, the flow map, the basis of a large class of Lagrangian coherent structures, is computed directly from observed particle tracks. We show entrainment regions and coherent vortices of the thermal plume in the flow map and compute fields of the finite-time Lyapunov exponent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Biwole PH, Yan W, Zhang Y, Roux JJ (2009) A complete 3D particle tracking algorithm and its applications to the indoor airflow study. Meas Sci Technol 20:115403

    Article  Google Scholar 

  • Bosbach J, Kühn M, Wagner C (2009) Large scale particle image velocimetry with helium filled soap bubbles. Exp Fluids 46:539–547

    Article  Google Scholar 

  • Brunton SL, Rowley CW (2010) Fast computation of finite-time Lyapunov exponent fields for unsteady flows. Chaos 20:017503

    Article  MathSciNet  MATH  Google Scholar 

  • Caridi GCA, Ragni D, Sciacchitano A, Scarano F (2016) HFSB-seeding for large-scale tomographic PIV in wind tunnels. Exp Fluids 57:190

    Article  Google Scholar 

  • Elsinga GE, Scarano F, Wieneke B, van Oudheusden BW (2006) Tomographic particle image velocimetry. Exp Fluids 41:933–947

    Article  Google Scholar 

  • Gesemann S, Huhn F, Schanz D, Schröder A (2016) From noisy particle tracks to velocity, acceleration and pressure fields using B-splines and penalties. In: 18th international symposia on applications of laser techniques to fluid mechanics, Lisbon, Portugal

  • Gilet T, Scheller T, Reyssat E, Vandewalle N, Dorbolo S (2007) How long will a bubble be? arXiv:0709.4412

  • Hadjighasem A, Karrasch D, Teramoto H, Haller G (2016) Spectral-clustering approach to Lagrangian vortex detection. Phys Rev E 93:063107

    Article  Google Scholar 

  • Haller G (2001) Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D 149:248–277

    Article  MathSciNet  MATH  Google Scholar 

  • Haller G (2015) Lagrangian coherent structures. Annu Rev Fluid Mech 47:137–162

    Article  Google Scholar 

  • Hong J, Tolouil M, Chamorro LP, Guala M, Howard K, Riley A, Tucker J, Sotiropoulos F (2014) Natural snowfall reveals large-scale flow structures in the wake of a 2.5-MW wind turbine. Nat Commun 5:4216

    Google Scholar 

  • Jahn T (2017) Volumetric flow field measurement: an implementation of Shake-The-Box, Master thesis, DLR Göttingen/Georg-August-Universität Göttingen

  • Klimas P (1973) Helium bubble survey on an opening parachute flow field. J Aircr 10:567–569

    Article  Google Scholar 

  • Kühn M, Ehrenfried K, Bosbach J, Wagner C (2011) Large-scale tomographic particle image velocimetry using helium-filled soap bubbles. Exp Fluids 50:929–948

    Article  Google Scholar 

  • Kundu PK, Cohen IM (2008) Fluid mechanics. Academic Press, Elsevier

    Google Scholar 

  • La Porta A, Voth GA, Crawford AM, Alexander J, Bodenschatz E (2001) Fluid particle accelerations in fully developed turbulence. Nature 409:1017–1019

    Article  MATH  Google Scholar 

  • Maas HG, Grün A, Papantoniou D (1993) Particle tracking in three dimensional turbulent flows—part I: photogrammetric determination of particle coordinates. Exp Fluids 15:133–146

    Article  Google Scholar 

  • Malik N, Dracos T, Papantoniou D (1993) Particle tracking in three dimensional turbulent flows—part II: particle tracking. Exp Fluids 15:279–294

    Article  Google Scholar 

  • Melling A (1997) Tracer particles and seeding for particle image velocimetry. Meas Sci Technol 8:1406

    Article  Google Scholar 

  • Morton BR, Taylor G, Turner JS (1956) Turbulent gravitational convection from maintained and instantaneous sources. Proc R Soc A 234(1196):1–23

    Article  MathSciNet  MATH  Google Scholar 

  • Müller RHG, Flögel H, Schere T, Schaumann O, Markwart M (2000) Investigation of large scale low speed air conditioning flow using PIV. In: 9th international symposium on flow visualization, Edinburgh, UK

  • Okuno Y, Fukuda T, Miwata Y, Kobayashi T (1993) Development of three dimensional air flow measuring method using soap bubbles. JSAE Rev 14:50–55

    Google Scholar 

  • Peacock T, Dabiri J (2010) Introduction to focus issue: Lagrangian coherent structures. Chaos 20:017501

    Article  Google Scholar 

  • Peacock T, Froyland G, Haller G (2015) Introduction to focus issue: objective detection of coherent structures. Chaos 25:087201

    Article  Google Scholar 

  • Pham MV, Plourde F, Kim SD (2005) Three-dimensional characterization of a pure thermal plume. J Heat Transf 127:624–636

    Article  Google Scholar 

  • Plourde F, Pham MV, Kim SD, Balachandar S (2008) Direct numerical simulations of a rapidly expanding thermal plume: structure and entrainment interaction. J Fluid Mech 604:99–123

    Article  MATH  Google Scholar 

  • Pounder E (1956) Parachute inflation process Wind-Tunnel Study, WADC Technical report 56-391, Equipment Laboratory, Wright Patterson Air Force Base. Ohio, USA, pp 17–18

  • Raben G, Ross SD, Vlachos PP (2014) Computation of finite-time Lyapunov exponents from time-resolved particle image velocimetry data. Exp Fluids 55:1638

    Article  Google Scholar 

  • Rosi GA, Sherry M, Kinzel M, Rival DE (2014) Characterizing the lower log region of the atmospheric surface layer via large-scale particle tracking velocimetry. Exp Fluids 55:1736

    Article  Google Scholar 

  • Rosi GA, Walker AM, Rival D (2015) Lagrangian coherent structure identification using a Voronoi tessellation-based networking algorithm. Exp Fluids 56:189

    Article  Google Scholar 

  • Scarano F, Ghaemi S, Caridi G, Bosbach J, Dierksheide U, Sciacchitano A (2015) On the use of helium-filled soap bubbles for large-scale tomographic PIV wind tunnel experiments. Exp Fluids 311(56):42

    Article  Google Scholar 

  • Schanz D, Gesemann S, Schröder A, Wieneke B, Novara M (2013a) Non-uniform optical transfer functions in particle imaging: calibration and application to tomographic reconstruction. Meas Sci Technol 24:024009

    Article  Google Scholar 

  • Schanz D, Schröder A, Gesemann S, Michaelis D, Wieneke B (2013b) Shake-the-Box: a highly efficient and accurate Tomographic Particle Tracking Velocimetry (TOMO-PTV) method using prediction of particle position. In: 10th international symposium on particle image velocimetry—PIV13, Delft, The Netherlands, July 1–3

  • Schanz D, Schröder A, Gesemann S (2014) Shake-the-Box—a 4D PTV algorithm: accurate and ghostless reconstruction of Lagrangian tracks in densely seeded flows. In: 17th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal, July 07–10

  • Schanz D, Schröder A, Gesemann S (2016a) Shake-The-Box: Lagrangian particle tracking at high particle image densities. Exp Fluids 57:70

    Article  Google Scholar 

  • Schanz D, Huhn F, Gesemann S, Dierksheide U, van de Meerendonk R, Manovski P, Schröder A (2016b) Towards high-resolution 3D flow field measurements at cubic meter scales. In: 18th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal

  • Schneiders JFG, Caridi GCA, Sciacchitano A, Scarano F (2016) Large-scale volumetric pressure from tomographic PTV with HFSB tracers. Exp Fluids 57:164

    Article  Google Scholar 

  • Tobin ST, Meagher AJ, Bulfin B, Möbius M, Hutzler S (2011) A public study of the lifetime distribution of soap films. Am J Phys 79(819):819–824

    Article  Google Scholar 

  • Wieneke B (2008) Volume self-calibration for 3D particle image velocimetry. Exp Fluids 45:549–556

    Article  Google Scholar 

  • Wieneke B (2013) Iterative reconstruction of volumetric particle distribution. Meas Sci Technol 24:024008

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Carsten Fuchs, Tobias Kleindienst, Michel Wüstefeld, Janos Agocs and Reinhard Geisler for their indispensable technical support while setting up the experiment in the DLR laboratories. Dirk Michaelis was of great help for image acquisition during the course of the experiment. We also acknowledge the loan of cameras and measurement equipment from LaVision GmbH. We appreciate the manuscript corrections by Walter Beck. Work including the experimental results has partly been funded by the DFG-project Analyse turbulenter Grenzschichten mit Druckgradient bei großen Reynoldszahlen mit hochauflösenden Vielkameramessverfahren (Grant Nos. KA 1808/14-1 and SCHR 1165/3-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Huhn.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huhn, F., Schanz, D., Gesemann, S. et al. Large-scale volumetric flow measurement in a pure thermal plume by dense tracking of helium-filled soap bubbles. Exp Fluids 58, 116 (2017). https://doi.org/10.1007/s00348-017-2390-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-017-2390-2

Navigation