Skip to main content
Log in

Estimation of turbulent energy dissipation in the boundary layer using Smoke Image Velocimetry

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Turbulent energy dissipation in the turbulent boundary layer has been estimated experimentally. Dissipation has been derived from dynamics of two-component instantaneous velocity vector fields measured by an optical method. Smoke Image Velocimetry technique based on digital processing of smoke visualization of flow and adapted to relatively large smoke displacement between two consecutive video frames has been employed. The obtained dissipation profiles have been compared with measurements by multi-sensor hot-wire anemometers, stereo PIV, Tomo-3D-PTV with VIC+, and DNS results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

I :

Pixel intensity

k :

Frame number

L :

Distance between the channel inlet and the measurement area (m)

N x :

Interrogation window length (pixel)

N y :

Interrogation window height (pixel)

S ii :

Strain-rate tensor components

U :

Velocity (m/s)

U :

Free-stream velocity (m/s)

U 99 :

0.99 U

\( \bar{U}_{99} \) :

Average velocity in the boundary layer (m/s)

u′ :

Fluctuating component of velocity vector (m/s)

u τ :

Dynamic velocity (m/s)

Δi :

Window displacement along x coordinate

Δj :

Window displacement along y coordinate

Δx :

Distance between the points at which U is measured (m)

δ :

Boundary layer thickness at 0.99 U (m)

δ x :

Distance between the points at which U is measured allowing for the approximation scheme (m)

ε :

Turbulent energy dissipation

θ :

Momentum thickness (m)

λ K :

Kolmogorov length scale (m)

υ :

Kinematic viscosity coefficient (m2/s)

Φ :

Functional of window similarity

Re :

Reynolds number based on 2δ and \( \bar{U}_{99} \)

Re τ :

Reynolds number based on δ and u τ

Re θ :

Reynolds number based on θ and U θ

References

  • Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Atkinson C, Coudert S, Foucaut JM, Stanislas M, Soria J (2011) The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer. Exp Fluids 50:1031. doi:10.1007/s00348-010-1004-z

    Article  Google Scholar 

  • Baldi S, Yianneskis M (2003) On the direct measurement of turbulence energy dissipation in stirred vessels with PIV. Ind Eng Chem Res 42(26):7006–7016. doi:10.1021/ie0208265

    Article  Google Scholar 

  • Balint JL, Wallace JM, Vukolavcevic P (1991) The velocity and vorticity vector fields of a turbulent boundary layer. Part 2. Statistical properties. J Fluid Mech 228:53–86. doi:10.1017/S002211209100263X

    Google Scholar 

  • Belov IA, Isaev SA (2001) Simulation of turbulent flows: Textbook. Baltiyskiy Gosudarstvenniy Tekhnicheskiy Universitet, S.Petersburg (in Russian)

  • Bizjan B, Orbanic A, Sirok B, Bajcar T, Novak L, Kovac B (2014) Flow image velocimetry method based on advection-diffusion equation. Strojniski vestnik J Mech Eng 60(7–8):483–494. doi:10.5545/sv-jme.2013.1614

    Article  Google Scholar 

  • Buxton O R H (2011) Fine scale features of turbulent shear flows. PhD thesis, Imperial College, Prince Consort Road, London, United Kingdom

  • Charonko J, Prestridge K (2016) Error and uncertainty for dissipation estimates using particle image velocimetry. 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, 04–10 July 2016, Lisbon, Portugal (ISBN 978-989-98777-8-8)

  • Elsinga GE, Scarano F, Wieneke B, van Oudheusden BW (2006) Tomographic particle image velocimetry. Exp Fluids 41(6):933–947. doi:10.1007/s00348-006-0212-z

    Article  Google Scholar 

  • Elsinga GE, Westerweel J, Scarano F, Novara M (2011) On the velocity of ghost particles and the bias errors in Tomographic-PIV. Exp Fluids 50:825–838. doi:10.1007/s00348-010-0930-0

    Article  Google Scholar 

  • Etebari A, Vlachos P (2005) Improvements on the accuracy of derivative estimation from DPIV velocity measurements. Exp Fluids 39:1040–1050. doi:10.1007/s00348-005-0037-1

    Article  Google Scholar 

  • Foucaut JM, Carlier J, Stanislas M (2004) PIV optimization for the study of turbulent flow using spectral analysis. Meas Sci Technol 15:1046. doi:10.1088/0957-0233/15/6/003

    Article  Google Scholar 

  • Foucaut JM, Cuvier C, Stanislas M, George WK (2016) Quantification of the full dissipation tensor from an L-shaped SPIV experiment in the near wall region. Progress in wall turbulence 2. Ercoftac series 23. Springer International Publishing, Switzerland. doi:10.1007/978-3-319-20388-1_38

  • George WK, Hussein HJ (1991) Locally axisymmetric turbulence. J Fluid Mech 233:1–23. doi:10.1017/S0022112091000368

    Article  MATH  Google Scholar 

  • Hearst RJ, Buxton ORH, Ganapathisubramani B, Lavoie P (2012) Experimental estimation of fluctuating velocity and scalar gradients in turbulence. Exp Fluids 53:925–942. doi:10.1007/s00348-012-1318-0

    Article  Google Scholar 

  • Hinze JO (1975) Turbulence, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Honkan A, Andreopoulos Y (1997) Vorticity, strain-rate and dissipation characteristics in the near-wall region of turbulent boundary layers. J Fluid Mech 350:29–96. doi:10.1017/S0022112097006770

    Article  MathSciNet  Google Scholar 

  • Huser A, Biringen S (1993) Direct numerical simulation of turbulent flow in a square duct. Fluid Mech. 257:65–95. doi:10.2514/6.1993-198

    Article  MATH  Google Scholar 

  • Kähler CJ, Scharnowski S, Cierpka C (2012) On the uncertainty of digital PIV and PTV near walls. Exp Fluids 52(6):1641–1656. doi:10.1007/s00348-012-1307-3

    Article  Google Scholar 

  • Klebanoff PS (1955) Characteristics of turbulence in a boundary layer with zero pressure gradient. Rep. 1247, Natl. Adv. Comm. For Aeronaut. Washington, D.C

  • Lavoie P, Djenidi L, Antonia RA (2007a) Effects of initial conditions in decaying turbulence generated by passive grids. J Fluid Mech 585:395–420. doi:10.1017/S0022112007006763

    Article  MATH  Google Scholar 

  • Lavoie P, Avallone G, De Gregorio F, Romano GP, Antonia RA (2007b) Spatial resolution of PIV for the measurement of turbulence. Exp Fluids 43(1):39–51. doi:10.1007/s00348-007-0319-x

    Article  Google Scholar 

  • Maas HG, Gruen A, Papantoniou D (1993) Particle tracking velocimetry in three-dimensional flows. Exp Fluids 15(2):133–146. doi:10.1007/BF00190953

    Article  Google Scholar 

  • Martinuzzi RJ, Hussein HJ (1995) Measurement of the turbulence dissipation rate in the wake of a bluff body. In: Symposium on Turbulent Shear Flows, 10th, Pennsylvania State Univ, University Park, pp 13–18

  • Mikheev NI, Dushin NS (2016) A method for measuring the dynamics of velocity vector fields in a turbulent flow using smoke image-visualization vide. Instr Exp Tech 59(6):880–887. doi:10.1134/S0020441216060063

    Article  Google Scholar 

  • Novara M, Scarano F (2013) A particle-tracking approach for accurate material derivative measurements with tomographic PIV. Exp Fluids 54:1–12. doi:10.1007/s00348-013-1584-5

    Article  Google Scholar 

  • Racina A, Kind M (2006) Specific power input and local micromixing times in turbulent Taylor-Couette flow. Exp Fluids 41(3):513–522. doi:10.1007/s00348-006-0178-x

    Article  Google Scholar 

  • Raffel M, Willert CE, Kompenhans J (1998) Particle Image Velocimetry: a practical guide. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Roach PE, Brierley DH (1989) The influence of a turbulent freestream on zero pressure gradient transitional boundary layer development including the condition test cases T3A and T3B. In: Pironneau O et al (eds) Numerical simulation of unsteady flows and transition to turbulence. Cambridge University Press, Cambridge

    Google Scholar 

  • Saarenrinne P, Piirto M (2000) Turbulent kinetic energy dissipation rate estimation from PIV velocity vector fields. Exp Fluids 29:300–307. doi:10.1007/s003480070032

    Article  Google Scholar 

  • Schanz D, Gesemann S, Schröder A (2016) Shake-The-Box: Lagrangian particle tracking at high particle image densities. Exp Fluids 57:70. doi:10.1007/s00348-016-2157-1

    Article  Google Scholar 

  • Schlatter P, Örlü R (2010) Assessment of direct numerical simulation data of turbulent boundary layers. J Fluid Mech 659:116–126. doi:10.1017/S0022112010003113

    Article  MATH  Google Scholar 

  • Schlatter P, Örlü R, Li Q, Brethouwer G, Fransson JHM, Johansson AV, Alfredsson PH, Henningson DS (2009) Turbulent boundary layers up to Re- = 2500 studied through simulation and experiment. Phys Fluids 21(5):051702. doi:10.1063/1.3139294

    Article  MATH  Google Scholar 

  • Schneiders JFG, Scarano F, Elsinga G (2016) On the Resolved Scales in a Turbulent Boundary Layer by Tomographic PIV and PTV aided by VIC+. In: 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, 04–10 July 2016, Lisbon, Portugal (ISBN 978-989-98777-8-8)

  • Schröder A, Schanz D, Geisler R, Gesemann S (2016) Investigations of coherent structures in near-wall turbulence and large wall-shear stress events using Shake-The-Box. In: 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, 04–10 July 2016, Lisbon, Portugal (ISBN 978-989-98777-8-8)

  • Sharp KV, Adrian RJ (2001) PIV study of small-scale flow structure around a Rushton turbine. AIChE J 47(4):766–778. doi:10.1002/aic.690470403

    Article  Google Scholar 

  • Sheng J, Meng H, Fox RO (2000) A large eddy PIV method for turbulence dissipation rate estimation. Chem Eng Sci 55(20):4423–4434. doi:10.1016/S0009-2509(00)00039-7

    Article  Google Scholar 

  • Tanaka T, Eaton JK (2007) A correction method for measuring turbulence kinetic energy dissipation rate by PIV. Exp Fluids 42(6):893–902. doi:10.1007/s00348-007-0298-y

    Article  Google Scholar 

  • Tokgoz S, Elsinga G, Delfos R, Westerweel J (2012) Spatial resolution and dissipation rate estimation in Taylor–Couette flow for tomographic PIV. Exp Fluids 53(3):561–583. doi:10.1007/s00348-012-1311-7

    Article  Google Scholar 

  • Wernersson ESW, Tragardh C (1999) Scale-up of Rushton turbine agitated tanks. Chem Eng Sci 54:4245. doi:10.1016/S0009-2509(99)00127-X

    Article  Google Scholar 

  • Wieneke B (2013) Iterative reconstruction of volumetric particle distribution. Meas Sci Technol 24:024008. doi:10.1088/0957-0233/24/2/024008

    Article  Google Scholar 

  • Wilcox DC (1994) Turbulence modeling for CFD. DCW Industries Inc, La Canada, California

    Google Scholar 

  • Willert CE (2015) High-speed particle image velocimetry for the efficient measurement of turbulence statistics. Exp Fluids 56:17. doi:10.1007/s00348-014-1892-4

    Article  Google Scholar 

  • Zaripov DI, Aslaev AK, Mikheev NI, Dushin NS (2016) Estimation of accuracy of new optical method of instantaneous flow velocity field measurement. Trudi Academenergo 1:42–52 (in Russian)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Russian Science Foundation (Project no. 16-19-10336). The authors would like to thank the anonymous reviewers for their insightful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Dushina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikheev, N.I., Goltsman, A.E., Saushin, I.I. et al. Estimation of turbulent energy dissipation in the boundary layer using Smoke Image Velocimetry. Exp Fluids 58, 97 (2017). https://doi.org/10.1007/s00348-017-2379-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-017-2379-x

Navigation