Skip to main content
Log in

Comparison between optical flow and cross-correlation methods for extraction of velocity fields from particle images

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This paper presents direct comparisons between the physics-based optical flow and well-established cross-correlation methods for extraction of velocity fields from particle images. The accuracy and limitations of the optical flow method applied to particle image velocimetry are critically evaluated. After a brief review of the optical flow method, we discuss in detail the error estimates, relevant parameters to the accuracy of optical flow computation, and mathematical connection between the optical flow and the particle velocity. Quantitative evaluations of both the optical flow and correlation methods are made through simulations and physical flow measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  • Adrian RJ (1991) Particle-imaging techniques for experimental fluid mechanics. Ann Rev Fluid Mech 23:261–304

    Article  Google Scholar 

  • Adrian RJ, Westerweed J (2011) Particle image velocimetry. Cambridge University Press, Cambridge

    Google Scholar 

  • Aubert G, Kornprobst P (1999) A mathematical study of the relaxed optical flow problem in the space BV(Ω). SIAM J Math Anal 30:1282–1308

    Article  MathSciNet  MATH  Google Scholar 

  • Aubert G, Deriche R, Kornprobst P (1999) Computing optical flow via variational techniques. SIAM J Appl Math 60:156–182

    Article  MathSciNet  MATH  Google Scholar 

  • Baker S, Mathews I (2004) Lucas-Kanade 20 years on: a unifying framework. Int J Comput Vis 56:221–255

    Article  Google Scholar 

  • Barron JL, Fleet DJ, Beauchemin SS (1994) Performance of optical flow techniques. Int J of Comput Vis 12:43–77

    Article  Google Scholar 

  • Cassisa C, Simoens S, Prinet V, Shao L (2011) Subgrid scale formulation of optical flow for the study of turbulent flow. Exp Fluids 51(6):1739–1754

    Article  Google Scholar 

  • Chen X, Zille P, Shao L, Corpetti T (2015) Optical flow for incompressible turbulence motion estimation. Exp Fluids 56(8):1–14

    Google Scholar 

  • Corpetti T, Memin E, Perez P (2002) Dense estimation of fluid flows. IEEE Trans Pattern Anal Mach Intell 24:365–380

    Article  Google Scholar 

  • Corpetti T, Heitz D, Arroyo G, Memin E (2006) Fluid experimental flow estimation based on an optical flow scheme. Exp Fluids 40:80–97

    Article  Google Scholar 

  • Dracos T, Gruen A (1998) Videogrammetric methods in velocimetry. Appl Mech Rev 51:387–413

    Article  Google Scholar 

  • Haussecker H, Fleet DJ (2001) Computing optical flow with physical models of brightness variation. IEEE Trans Pattern Anal Mach Intell 23:661–673

    Article  Google Scholar 

  • Héas P, Memin E, Papadakis N, Szantai A (2007) Layered estimation of atmospheric mesoscale dynamics from satellite imagery. IEEE Trans Geosci Remote Sens 45:4087–4104

    Article  Google Scholar 

  • Heitz D, Héas P, Mémin E, Carlier J (2008) Dynamic consistent correlation-variational approach for robust optical flow estimation. Exp Fluids 45:595–608

    Article  Google Scholar 

  • Heitz D, Memin E, Schnorr C (2010) Variational fluid flow measurements from image sequences: synopsis and perspectives. Exp Fluids 48:369–393

    Article  Google Scholar 

  • Hildebrand FB (1974) Introduction to numerical analysis, 2nd edn. Dover, New York

    MATH  Google Scholar 

  • Horn BK, Schunck BG (1981) Determining optical flow. Artif Intell 17:185–204

    Article  Google Scholar 

  • Liu T, Shen L (2008) Fluid flow and optical flow. J Fluid Mech 614:253–291

    Article  MathSciNet  MATH  Google Scholar 

  • Liu T, Sullivan J (1996) Heat transfer and flow structures in an excited circular impinging jet. Int J Heat Mass Trans 39:3695–3706

    Article  Google Scholar 

  • Liu T, Nink J, Merati P, Tian T, Li Y, Shieh T (2010) Deposition of micron liquid droplets on wall in impinging turbulent air jet. Exp Fluids 48:1037–1057

    Article  Google Scholar 

  • Liu T, Wang B, Choi D (2012) Flow structures of Jupiter’s great red spot extracted by using optical flow method. Phys Fluids 24:096601–096613

    Article  Google Scholar 

  • Maas HG, Gruen A, Papantoniou D (1993) Particle tracking velocimetry in three-dimensional flows. Exp Fluids 15:133–146

    Article  Google Scholar 

  • Quenot GM, Pakleza J, Kowalewski TA (1998) Particle image velocimetry with optical flow. Exp Fluids 25:177–189

    Article  Google Scholar 

  • Raffel M, Willert C, Wereley S, Kompenhans J (2007) Particle image velocimetry. Springer, Berlin

    Google Scholar 

  • Ruhnau P, Kohlberger T, Schnorr C, Nobach H (2005) Variational optical flow estimation for particle image velocimetry. Exp Fluids 38:21–32

    Article  Google Scholar 

  • Stanislas M, Okamoto K, Kähler C (2003) Main results of the first international PIV challenge. Meas Sci Technol 14:R63–R89

    Article  Google Scholar 

  • Stanislas M, Okamoto K, Kähler C, Westerweel J (2005) Main results of the second international PIV challenge. Exp Fluids 39:170–191

    Article  Google Scholar 

  • Stanislas M, Okamoto K, Kähler C, Westerweel J, Scarano F (2008) Main results of the third international PIV challenge. Exp Fluids 45:27–71

    Article  Google Scholar 

  • Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problems, chapter II. Wiley, New York

    Google Scholar 

  • Timmins BH, Wilson BW, Smith BL, Vlachos PP (2012) A method for automatic estimation of instantaneous local uncertainty in particle image velocimetry measurements. Exp Fluids 53:1133–1147

    Article  Google Scholar 

  • Wang B, Cai Z, Shen L, Liu T (2015) An analysis of physics-based optical flow method. J Comput Appl Math 276:62–80

    Article  MathSciNet  MATH  Google Scholar 

  • Wildes RP, Amabile MJ, Lanzillotto A-M, Leu T-S (2000) Recovering estimates of fluid flow from image sequence data. Comput Vis Image Underst 80:246–266

    Article  MATH  Google Scholar 

  • Yuan J, Schnorr C, Memin E (2007) Discrete orthogonal decomposition and variational fluid flow estimation. J Math Imaging Vis 28:67–80

    Article  MathSciNet  Google Scholar 

  • Zille P, Corpetti T, Shao L, Xu C (2014) Observation models based on scale interactions for optical flow estimation. IEEE Trans Image Process 23(8):3281–3293

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank R. Prevost (LaVision) and Z. Yang (Wright State University) for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianshu Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Merat, A., Makhmalbaf, M.H.M. et al. Comparison between optical flow and cross-correlation methods for extraction of velocity fields from particle images. Exp Fluids 56, 166 (2015). https://doi.org/10.1007/s00348-015-2036-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-015-2036-1

Keywords

Navigation