Skip to main content
Log in

Nanoscale sensing devices for turbulence measurements

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A collection of nanoscale sensing devices developed specifically for high-frequency turbulence measurements is presented. The new sensors are all derived from the nanoscale thermal anemometry probe (NSTAP), which uses a free-standing platinum wire as active sensing element. Each sensor is designed and fabricated to measure a specific quantity and can be customized for special applications. In addition to the original NSTAP (for single-component velocity measurement), the new sensors include the T-NSTAP (for temperature measurement), the x-NSTAP (for two-component velocity measurement), and the q-NSTAP (for humidity measurement). This article provides a summary of the NSTAP family including details of design and fabrication as well as presentation of flow measurements using these sensors. Also, a custom-made constant-temperature anemometer that allows proper operation of the NSTAP sensors will be introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Arwatz G, Bahri C, Smits AJ, Hultmark M (2013) Dynamic calibration and modeling of a cold wire for temperature measurement. Meas Sci Technol 24(12):125301

    Article  Google Scholar 

  • Arwatz G, Fan Y, Bahri C, Hultmark M (2015) Development and characterization of a nano-scale temperature sensor (t-nstap) for turbulent temperature measurements. Meas Sci Technol 26(3):035103

    Article  Google Scholar 

  • Ashok A, Bailey S, Hultmark M, Smits A (2012) Hot-wire spatial resolution effects in measurements of grid-generated turbulence. Exp Fluids 53(6):1713–1722

    Article  Google Scholar 

  • Bailey SC, Kunkel GJ, Hultmark M, Vallikivi M, Hill JP, Meyer KA, Tsay C, Arnold CB, Smits AJ (2010) Turbulence measurements using a nanoscale thermal anemometry probe. J Fluid Mech 663:160–179

    Article  MATH  Google Scholar 

  • Beirão S, Ribeiro A, Lourenço M, Santos F, de Castro CN (2012) Thermal conductivity of humid air. Int J Thermophys 33(8–9):1686–1703

    Article  Google Scholar 

  • Bodenschatz E, Bewley G, Nobach H, Sinhuber M, Xu H (2014) Variable density turbulence tunnel facility. Rev Sci Instrum 85(9):093908–093918. doi:10.1063/1.4896138

    Article  Google Scholar 

  • Borisenkov Y, Kholmyansky M, Krylov S, Liberzon A, Tsinober A (2015) Multiarray micromachined probe for turbulence measurements assembled of suspended hot-film sensors. J Microelectromech Syst PP(99):1. doi:10.1109/JMEMS.2015.2417213

    Article  Google Scholar 

  • Bradshaw P (1971) An introduction to turbulence and its measurement. Pergamon international library of science, technology, engineering, and social studies. Pergamon Press. ISBN 9780080166216

  • Brocard Y, Desplas P (1984) Vortical flow exploration methods developed for the f1 wind tunnel. In: In AGARD Wind Tunnels and Testing Tech. 15 p (SEE N84–23564 14–01), vol 1

  • Chen J, Fan Z, Zou J, Engel J, Liu C (2003) Two-dimensional micromachined flow sensor array for fluid mechanics studies. J Aerosp Eng 16(2):85–97

    Article  Google Scholar 

  • Ebefors T, Kalvesten E, Stemme G (1998) Three dimensional silicon triple-hot-wire anemometer based on polyimide joints. In: Micro electro mechanical systems, 1998. MEMS 98. Proceedings., the eleventh annual international workshop on, IEEE, pp 93–98

  • Ekelof S (2001) The genesis of the wheatstone bridge. Eng Sci Educ J 10(1):37–40

    Article  Google Scholar 

  • Ho C, Li W, Garstenauer M, Karan K, Leu T, Tai Y (1993) Micromachined hot-point anemometer. Part ii: testing and calibration. Bull Am Phys Soc 38:2234

    Google Scholar 

  • Hultmark M, Ashok A, Smits AJ (2011) A new criterion for end-conduction effects in hot-wire anemometry. Meas Sci Technol 22(5):055401

    Article  Google Scholar 

  • Hultmark M, Vallikivi M, Bailey S, Smits A (2012) Turbulent pipe flow at extreme reynolds numbers. Phys Rev Lett 108(9):094501

    Article  Google Scholar 

  • Hultmark M, Vallikivi M, Bailey S, Smits A (2013) Logarithmic scaling of turbulence in smooth-and rough-wall pipe flow. J Fluid Mech 728:376–395

    Article  MATH  Google Scholar 

  • Hutchins N, Nickels TB, Marusic I, Chong M (2009) Hot-wire spatial resolution issues in wall-bounded turbulence. J Fluid Mech 635:103–136

    Article  MATH  Google Scholar 

  • Hutchins N, Monty J, Hultmark M, Smits A (2015) A direct measure of the frequency response of hot-wire anemometers: temporal resolution issues in wall-bounded turbulence. Exp Fluids 56(1):1–18

    Article  Google Scholar 

  • Jayesh, Warhaft Z (1991) Probability distribution of a passive scalar in grid-generated turbulence. Phys Rev Lett 67:3503–3506. doi:10.1103/PhysRevLett.67.3503

    Article  Google Scholar 

  • Jayesh, Warhaft Z (1992) Probability distribution, conditional dissipation, and transport of passive temperature fluctuations in grid-generated turbulence. Phys Fluids A Fluid Dyn (1989–1993) 4(10):2292–2307. doi:10.1063/1.858469

    Article  Google Scholar 

  • Jiang F, Tai YC, Ho CM, Karan R, Garstenauer M (1994) Theoretical and experimental studies of micromachined hot-wire anemometers. In: Electron devices meeting,1994. IEDM’94. Technical Digest., International, IEEE, pp 139–142

  • Kim S, Nam T, Park S (2004) Measurement of flow direction and velocity using a micromachined flow sensor. Sens Actuators A Phys 114(2):312–318

    Article  Google Scholar 

  • Kunkel G, Arnold C, Smits A (2006) Development of nstap: nanoscale thermal anemometry probe. In: Proceedings of the 36th AIAA fluid dynamics conference

  • Laufer J (1954) The structure of turbulence in fully developed pipe flow. National committee for aeronautics

  • Ligrani P, Bradshaw P (1987) Spatial resolution and measurement of turbulence in the viscous sublayer using subminiature hot-wire probes. Exp Fluids 5(6):407–417

    Article  Google Scholar 

  • Löfdahl L, Stemme G, Johansson B (1989) A sensor based on silicon technology for turbulence measurements. J Phys E Sci Instrum 22(6):391

    Article  Google Scholar 

  • Löfdahl L, Stemme G, Johansson B (1992) Silicon based flow sensors for mean velocity and turbulence measurements. Exp Fluids 12:391–393

    Google Scholar 

  • Marusic I, Monty JP, Hultmark M, Smits AJ (2013) On the logarithmic region in wall turbulence. J Fluid Mech 716:R3

    Article  MathSciNet  Google Scholar 

  • Nickels T, Marusic I, Hafez S, Hutchins N, Chong M (2007) Some predictions of the attached eddy model for a high reynolds number boundary layer. Philos Trans R Soc A Math Phys Eng Sci 365(1852):807–822

    Article  MATH  Google Scholar 

  • Pumir A, Shraiman BI, Siggia ED (1991) Exponential tails and random advection. Phys Rev Lett 66:2984–2987. doi:10.1103/PhysRevLett.66.2984

    Article  Google Scholar 

  • Rosenberg B, Hultmark M, Vallikivi M, Bailey S, Smits A (2013) Turbulence spectra in smooth-and rough-wall pipe flow at extreme reynolds numbers. J Fluid Mech 731:46–63

    Article  MATH  Google Scholar 

  • Sinhuber M, Bodenschatz E, Bewley GP (2015) Decay of turbulence at high reynolds numbers. Phys Rev Lett 114(3):034,501

    Article  Google Scholar 

  • Smits A, Perry A, Hoffmann P (1978) The response to temperature fluctuations of a constant-current hot-wire anemometer. J Phys E Sci Instrum 11(9):909

    Article  Google Scholar 

  • Smits A, Monty J, Hultmark M, Bailey S, Hutchins N, Marusic I (2011) Spatial resolution correction for wall-bounded turbulence measurements. J Fluid Mech 676:41–53

    Article  MATH  Google Scholar 

  • Smits AJ, Hultmark M (2014) Nanoscale instrumentation for measuring turbulence. In: Proceedings of 19th Australasian Fluid Mechanics Conference (Melbourne, Australia, 8–11 Dec) 19:11–17

  • Tai Y, Jiang F, Liu C, Wu R, Ho C (1993) Micromachined hot-point anemometer. Part i: design and fabrication. Bull Am Phys Soc 38:2234

    Google Scholar 

  • Talamelli A, Persiani F, Fransson JH, Alfredsson PH, Johansson AV, Nagib HM, Rüedi JD, Sreenivasan KR, Monkewitz PA (2009) Ciclopea response to the need for high reynolds number experiments. Fluid Dyn Res 41(2):021407

    Article  Google Scholar 

  • Townes HW, Gow J, Powe R, Weber N (1972) Turbulent flow in smooth and rough pipes. J Fluids Eng 94(2):353–361

    Google Scholar 

  • Townsend AA (1976) The structure of turbulent shear flow, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Tsilingiris P (2008) Thermophysical and transport properties of humid air at temperature range between 0 and 100 c. Energy Convers Manag 49(5):1098–1110

    Article  Google Scholar 

  • Vallikivi M, Smits A (2014) Fabrication and characterization of a novel nanoscale thermal anemometry probe. J Microelectromech Syst 23(4):899–907. doi:10.1109/JMEMS.2014.2299276

    Article  Google Scholar 

  • Vallikivi M, Hultmark M, Bailey S, Smits A (2011) Turbulence measurements in pipe flow using a nano-scale thermal anemometry probe. Exp Fluids 51(6):1521–1527

    Article  Google Scholar 

  • Vallikivi M, Hultmark M, Smits A (2012) Turbulence measurements at high reynolds numbers using a new inclined nano-scale thermal anemometry probe. In: Proceedings of 18th Australasian Fluid Mechanics Conference (Launceston, Australia, 3–7 Dec) 18:179–82

  • Wang YH, Lee CY, Chiang CM (2007) A mems-based air flow sensor with a free-standing micro-cantilever structure. Sensors 7(10):2389–2401

    Article  Google Scholar 

  • Watmuff JH (1994) A high-performance constant-temperature hot-wire anemometer. NASA Contractor Report 177645

  • Willmarth WW, Sharma LK (1984) Study of turbulent structure with hot wires smaller than the viscous length. J Fluid Mech 142:121–149

    Article  Google Scholar 

  • Wyngaard J (1968) Measurement of small-scale turbulence structure with hot wires. J Phys E Sci Instrum 1(11):1105

    Article  Google Scholar 

  • Zagarola MV, Smits AJ (1998) Mean-flow scaling of turbulent pipe flow. J Fluid Mech 373:33–79

    Article  MATH  Google Scholar 

  • Zhao R, Smits AJ (2007) Scaling of the wall-normal turbulence component in high-reynolds-number pipe flow. J Fluid Mech 576:457–473

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Lex Smits for making all of the above-described sensors possible by pioneering MEMS-based turbulence measurements and for his many helpful comments and suggestions. This work was made possible through ONR grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim) and the Fondation pour l’Etude des Eaux du Léman (FEEL). The development of the T-NSTAP and the q-NSTAP is part of the international, interdisciplinary research project elemo (http://www.elemo.ch) whose objective is to study and preserve freshwater resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Fan.

Additional information

This article belongs to a Topical Collection of articles entitled Extreme Flow Workshop 2014. Guest editors: I. Marusic and B. J. McKeon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Arwatz, G., Van Buren, T.W. et al. Nanoscale sensing devices for turbulence measurements. Exp Fluids 56, 138 (2015). https://doi.org/10.1007/s00348-015-2000-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-015-2000-0

Keywords

Navigation