Skip to main content
Log in

Visualization of dynamic boiling processes using high-speed optical coherence tomography

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Investigating microscale nucleate boiling processes with high heat flux requires experimental visualization and quantification with high spatial resolution in the micrometer range as well as a sufficient temporal resolution. Numerous measurement techniques are employed for providing comprehensive experimental data on microscale boiling processes and other multiphase flows. In this context, optical coherence tomography (OCT) has been introduced recently for the visualization of quasistatic growing vapor bubbles in turbid fluids with a high spatial resolution. Since OCT detects backscattered light, only one optical access is necessary and OCT is feasible for measurements in turbid media, where other imaging techniques fail. Within this study, a high-speed OCT system is utilized for visualizing dynamic nucleate boiling processes at a heated surface with a frame rate of about 234 Hz. The bubble contour is extracted out of the OCT images using segmentation and tracking algorithm, which provide bubble contours and the course of the bubble area for individual vapor bubbles over time. Additionally, high-speed Doppler OCT imaging is presented revealing the velocity component of the fluid in beam direction up to 30 mm/s unambiguously. The present proof of principle study suggests high-speed OCT imaging as a promising and alternative technique for the simultaneous measurement of bubble geometries and fluid velocities in dynamic processes with a high spatial resolution of 16 µm. Due to the ongoing development and availability of ultra high-speed OCT systems, the perspective temporal resolution will be comparable to the frame rates provided by presently established techniques, such as particle image velocimetry or high-speed camera imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmadi R, Ueno T, Okawa T (2012) Bubble dynamics at boiling incipience in subcooled upward flow boiling. Int J Heat Mass Transf 55(1–3):488–497. doi:10.1016/j.ijheatmasstransfer.2011.09.050

    Article  Google Scholar 

  • Burgmann S, Blank M, Panchenko O, Wartmann J (2013) µPIV measurements of two-phase flows of an operated direct methanol fuel cell. Exp Fluids 54(5):1513. doi:10.1007/s00348-013-1513-7

    Article  Google Scholar 

  • Chen C, Menon PG, Kowalski W, Pekkan K (2013) Time-resolved OCT-µPIV: a new microscopic PIV technique for noninvasive depth-resolved pulsatile flow profile acquisition. Exp Fluids 54:1426. doi:10.1007/s00348-012-1426-x

    Article  Google Scholar 

  • Dahikar SK, Sathe MJ, Joshi JB (2010) Investigation of flow and temperature patterns in direct contact condensation using PIV, PLIF and CFD. Chem Eng Sci 65(16):4606–4620. doi:10.1016/j.ces.2010.05.004

    Article  Google Scholar 

  • Dominguez-Ontiveros E, Fortenberry S, Hassan YA (2010) Experimental observations of flow modifications in nanofluid boiling utilizing particle image velocimetry. Nucl Eng Des 240(2):299–304. doi:10.1016/j.nucengdes.2009.09.017

    Article  Google Scholar 

  • Driscoll DF, Bistrian BR, Demmelmair H, Koletzko B (2008) Pharmaceutical and clinical aspects of parenteral lipid emulsions in neonatology. Clin Nutr 27:497–503. doi:10.1016/j.clnu.2008.05.003

    Article  Google Scholar 

  • Driscoll DF, Ling P, Bistrian BR (2009) Pharmacopeial compliance of fish oil-containing parenteral lipid emulsion mixtures: globule size distribution (GSD) and fatty acid analyses. Int J Pharm 379:125–130. doi:10.1016/j.ijpharm.2009.06.021

    Article  Google Scholar 

  • Duan X, Phillips B, McKrell T, Buongiorno J (2013) Synchronized high-speed video, infrared thermometry, and particle image velocimetry data for validation of interface-tracking simulations of nucleate boiling phenomena. Exp Heat Transf 26(2–3):169–197. doi:10.1080/08916152.2012.736837

    Article  Google Scholar 

  • Hassan YA, Estrada-Perez C, Yoo JS (2014) Measurement of subcooled flow boiling using particle tracking velocimetry and infrared thermographic technique. Nucl Eng Des 268:185–190. doi:10.1016/j.nucengdes.2013.04.044

    Article  Google Scholar 

  • Hu H, Jin Z, Nocera D, Lum C, Koochesfahani M (2010) Experimental investigations of micro-scale flow and heat transfer phenomena by using molecular tagging techniques. Meas Sci Technol 21(8):085401. doi:10.1088/0957-0233/21/8/085401

    Article  Google Scholar 

  • Huber R, Adler DC, Fujimoto JG (2006a) Buffered fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Opt Lett 31(20):2975–2977. doi:10.1364/OL.31.002975

    Article  Google Scholar 

  • Huber R, Wojtkowski M, Fujimoto JG (2006b) Fourier domain mode locking (fdml): a new laser operating regime and applications for optical coherence tomography. Opt Express 14(8):3225–3237. doi:10.1364/OE.14.003225

    Article  Google Scholar 

  • Jiang YY, Osada H, Inagaki M, Horinouchi N (2013) Dynamic modeling on bubble growth, detachment and heat transfer for hybrid-scheme computations of nucleate boiling. Int J Heat Mass Transf 56(12):640–652. doi:10.1016/j.ijheatmasstransfer.2012.09.006

    Article  Google Scholar 

  • Jung S, Kim H (2014) An experimental method to simultaneously measure the dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface. Int J Heat Mass Transf 73:365–375. doi:10.1016/j.ijheatmasstransfer.2014.02.014

    Article  Google Scholar 

  • Khodaparast S, Borhani N, Tagliabue G, Thome JR (2013) A micro particle shadow velocimetry (µpsv) technique to measure flows in microchannels. Exp Fluids 54(2):1474. doi:10.1007/s00348-013-1474-x

    Article  Google Scholar 

  • Kim H (2011) Enhancement of critical heat flux in nucleate boiling of nanofluids: a state-of-art review. Nanoscale Res Lett 6:415. doi:10.1186/1556-276X-6-415

    Article  Google Scholar 

  • Kim BJ, Liu YZ, Sung HJ (2004) Micro piv measurement of two-fluid flow with different refractive indices. Meas Sci Technol 15(6):1097. doi:10.1088/0957-0233/15/6/008

    Article  Google Scholar 

  • Kim SJ, McKrell T, Buongiorno J, Hu L (2010) Subcooled flow boiling heat transfer of dilute alumina, zinc oxide and diamond nanofluids at atmospheric pressure. Nucl Eng Des 240:1186–1194. doi:10.1016/j.nucengdes.2010.01.020

    Article  Google Scholar 

  • Kirsten L, Gaertner M, Schnabel C, Meissner S, Koch E (2013a) Four-dimensional imaging of murine subpleural alveoli using high-speed optical coherence tomography. J Biophotonics 6(2):148–152. doi:10.1002/jbio.201200027

    Article  Google Scholar 

  • Kirsten L, Schnabel C, Gaertner M, Koch E (2013b) Four-dimensional optical coherence tomography imaging of total liquid ventilated rats. Proc SPIE 8802:88020F–88020F-6. doi:10.1117/12.2032434

  • Magnini M, Pulvirenti B, Thome J (2013) Numerical investigation of hydro-dynamics and heat transfer of elongated bubbles during flow boiling in a microchannel. Int J Heat Mass Transf 59:451–471. doi:10.1016/j.ijheatmasstransfer.2012.12.010

    Article  Google Scholar 

  • Meissner S, Herold J, Kirsten L, Schneider C, Koch E (2012) 3d optical coherence tomography as new tool for microscopic investigations of nucleate boiling on heated surfaces. Int J Heat Mass Transf 55(21–22):5565–5569. doi:10.1016/j.ijheatmasstransfer.2012.05.039

    Article  Google Scholar 

  • Mujat M, Ferguson RD, Iftima N, Hammer DX, Nedyalkov I, Wosnik M, Legner H (2013) Optical coherence tomography-based micro-particle image velocimetry. Opt Lett 38(22):4558–4561. doi:10.1364/OL.38.004558

    Article  Google Scholar 

  • Natrajan VK, Christensen KT (2009) Two-color laser-induced fluorescent thermometry for microfluidic systems. Meas Sci Technol 20(1):015401. doi:10.1088/0957-0233/20/1/015401

    Article  Google Scholar 

  • Potsaid B, Jayaraman V, Fujimoto JG, Jiang J, Heim PJS, Cable AE (2012) Mems tunable vcsel light source for ultrahigh speed 60khz–1mhz axial scan rate and long range centimeter class oct imaging. Proc SPIE 8213:82130M–82130M-8. doi:10.1117/12.911098

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. doi:10.1038/nmeth.2019

    Article  Google Scholar 

  • Schneider C, Hampel R, Traichel A, Antonio H, Meissner S, Koch E (2012a) Experimental investigation of nucleate boiling on capillary tubes under pwr specific subcooling and flow parameters. Proc 20th international conference on nuclear engineering and the ASME 2012 power conference 5:349–356. doi:10.1115/ICONE20-POWER2012-54640

  • Schneider CA, Rasband WS, Eliceiri KW (2012b) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675. doi:10.1038/nmeth.2089

    Article  Google Scholar 

  • Teodori E, Moita A, Moreira A (2013) Characterization of pool boiling mechanisms over micro-patterned surfaces using PIV. Int J Heat Mass Transf 66:261–270. doi:10.1016/j.ijheatmasstransfer.2013.07.033

    Article  Google Scholar 

  • Trasischker W, Werkmeister RM, Zotter S, Baumann B, Torzicky T, Pircher M, Hitzenberger CK (2013) In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography. J Biomed Opt 18(11):116010. doi:10.1117/1.JBO.18.11.116010

    Article  Google Scholar 

  • Tschumperle D, Deriche R (2005) Vector-valued image regularization with pdes: a common framework for different applications. Pattern Anal Mach Intell IEEE Trans 27(4):506–517. doi:10.1109/TPAMI.2005.87

    Article  Google Scholar 

  • Walther J, Koch E (2011) Enhanced joint spectral and time domain optical coherence tomography for quantitative flow velocity measurement. Proc SPIE 8091:80910L–80910L-7. doi:10.1117/12.889685

  • Walther J, Mueller G, Morawietz H, Koch E (2010) Signal power decrease due to fringe washout as an extension of the limited doppler flow measurement range in spectral domain optical coherence tomography. J Biomed Opt 15(4):041511. doi:10.1117/1.3466578

    Article  Google Scholar 

  • Walther J, Cimalla P, Koch E (2011) Lateral resonant doppler imaging for quantitative flow extraction in spectral domain optical coherence tomography. Proc SPIE 7889:788914–788914-6. doi:10.1117/12.874522

  • Wereley ST, Meinhart CD (2010) Recent advances in micro-particle image velocimetry. Annu Rev Fluid Mech 42(1):557–576. doi:10.1146/annurev-fluid-121108-145427

    Article  Google Scholar 

  • Wieser W, Biedermann BR, Klein T, Eigenwillig CM, Huber R (2010) Multi-megahertz oct: high quality 3d imaging at 20 million a-scans and 4.5 gvoxels per second. Opt Express 18(14):14685–14704. doi:10.1364/OE.18.014685

    Article  Google Scholar 

  • Williams SJ, Park C, Wereley ST (2010) Advances and applications on micro fluidic velocimetry techniques. Microfluid Nanofluid 8(6):709–726. doi:10.1007/s10404-010-0588-1

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the German Federal Ministry of Education and Research (BMBF) within the joint project “fundamental research Energy 2020+”, project number 02NUK010C and 02NUK010l. The corresponding author was jointly supported by the European Social Fund and Micro-Epsilon Optronic GmbH, Germany.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Kirsten.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1 (ESM_1.mpg) The sequence shows 384 pairs of OCT cross sections (right) and camera images (left) of a 1.64 s long image sequence. The frame rate is 234 Hz corresponding to an acquisition time of 4.3 ms per OCT cross section. The scale bar in each image represents 1 mm in every direction for camera and OCT images (refractive index of 1 assumed). The lateral position of the OCT cross section is in the middle of the corresponding camera image, which is indicated by the red vertical line in each camera image. (MPG 19014 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirsten, L., Domaschke, T., Schneider, C. et al. Visualization of dynamic boiling processes using high-speed optical coherence tomography. Exp Fluids 56, 52 (2015). https://doi.org/10.1007/s00348-015-1921-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-015-1921-y

Keywords

Navigation