Skip to main content
Log in

Meandering jets in shallow rectangular reservoirs: POD analysis and identification of coherent structures

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The effect of the shallowness on meandering jets in a shallow rectangular reservoir is investigated. Four meandering flows were investigated in an experimental shallow rectangular reservoir. Their boundary conditions were chosen to cover a large range of friction numbers (defined with the sudden expansion width). Due to the unsteady characteristics of the flows, a proper orthogonal decomposition (POD) of the fluctuating part of the surface velocity fields measured using Large-Scale Particle Image Velocity was used for discriminating the flow structures responsible for the meandering of the jet. Less than 1 % of the calculated POD modes significantly contribute to the meandering of the jet, and two types of instability are in competition in such a flow configuration. The sinuous mode is the dominant mode in the flow, and it induces the meandering of the flow, while the varicose mode is a source of local mixing and weakly participates to the flow. The fluctuating velocity fields were then reconstructed using the POD modes corresponding to 80 % of the total mean fluctuating kinetic energy, and the coherent structures were identified using the residual vorticity, their centres being localised using a topology algorithm. The trajectories of the structures centres emphasise that at high friction number the coherent structures are small and laterally paired in the near, middle and far fields of the jet, while with decreasing friction number, the structures merge into large horizontal vortices in the far field of the jet, their trajectories showing more variability in space and time. The analysis of the stability regime finally reveals that the sinuous mode is convectively unstable and may become absolutely unstable at the end of the reservoir when the friction number is small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aloui F, Souhar M (2000) Experimental study of turbulent asymmetric flow in a flat duct symmetric sudden expansion. J Fluids Eng Trans ASME 122:174–177

    Article  Google Scholar 

  • Babarutsi S, Ganoulis J, Chu VH (1989) Experimental investigation of shallow recirculating flows. J Hydraul Eng ASCE 115(7):906–924

    Article  Google Scholar 

  • Babarutsi S, Nassiri M, Chu VH (1996) Computation of shallow recirculating flow dominated by friction. J Hydraul Eng ASCE 122:367–372

    Article  Google Scholar 

  • Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Ann Rev Fluid Mech 25:539–575

    Article  MathSciNet  Google Scholar 

  • Brevis W, García-Villalba M (2011) Shallow-flow visualization analysis by proper orthogonal decomposition. J Hydraul Res 49:586–594. doi:10.1080/00221686.2011.585012

    Article  Google Scholar 

  • Camnasio E, Orsi E, Schleiss AJ (2011) Experimental study of velocity fields in rectangular shallow reservoirs. J Hydraul Res 49:352–358

    Article  Google Scholar 

  • Camnasio E, Erpicum S, Orsi E, Pirotton M, Schleiss AJ, Dewals AJ (2013) Coupling between flow and sediment deposition in rectangular shallow reservoirs. J Hydraul Res 10(1080/00221686):805311

    Google Scholar 

  • Canbazoglu S, Bozkir O (2004) Analysis of pressure distribution of turbulent asymmetric flow in a flat duct symmetric sudden expansion with small aspect ratio. Fluid Dyn Res 35:341–355

    Article  MATH  Google Scholar 

  • Canestrelli A, Nardin W, Edmonds D, Fagherazzi S, Slingerland R (2014) Importance of frictional effects and jet instability on the morphodynamics of river mouth bars and levees. J Geophys Res Oceans: n/a–n/a. doi:10.1002/2013JC009312

  • Chen D, Jirka GH (1997) Absolute and convective instabilities of plane turbulent wakes in shallow water layer. J Fluid Mech 338:157–172

    Article  MATH  MathSciNet  Google Scholar 

  • Chen D, Jirka GH (1998) Linear stability analysis of turbulent mixing layers and jets in shallow water layers. J Hydraul Res 36:815–830

    Article  Google Scholar 

  • Chu VH, Khayat RE, Wu JH (1983) Stability of turbulent shear flows in shallow channel 20th IAHR Congr, Sep 5–9, Moscow, USSR. IAHR, Delft, pp 128–133

    Google Scholar 

  • Chu VH, Liu F, Altai W (2004) Friction and confinement effects on a shallow recirculating flow. J Environ Eng Sci 3:463–475. doi:10.1139/S04-034

    Article  Google Scholar 

  • Couplet M, Sagaut P, Basdevant C (2003) Intermodal energy transfers in a proper orthogonal decomposition—Galerkin representation of a turbulent separated flow. J Fluid Mech 491:275–284

  • Depardon S, Lasserre JJ, Brizzi LE, Borée J (2006) Instantaneous skin-friction pattern analysis using automated critical point detection on near-wall PIV data. Meas Sci Technol 17:1659–1669

    Article  Google Scholar 

  • Dewals BJ, Kantoush SA, Erpicum S, Pirotton M, Schleiss AJ (2008) Experimental and numerical analysis of flow instabilities in rectangular shallow basins. Environ Fluid Mech 8:31–54

    Article  Google Scholar 

  • Dracos T, Giger M, Jirka GH (1992) Plane turbulent jets in a bounded fluid layer. J Fluid Mech 241:587–614

    Article  Google Scholar 

  • Dufresne M, Dewals BJ, Erpicum S, Archambeau P, Pirotton M (2010a) Classification of flow patterns in rectangular shallow reservoirs. J Hydraul Res 48:197–204

    Article  Google Scholar 

  • Dufresne M, Dewals BJ, Erpicum S, Archambeau P, Pirotton M (2010b) Experimental investigation of flow pattern and sediment deposition in rectangular shallow reservoirs. Int J Sediment Res 25:258–270

    Article  Google Scholar 

  • Dufresne M, Dewals BJ, Erpicum S, Archambeau P, Pirotton M (2011) Numerical investigation of flow patterns in rectangular shallow reservoirs. Eng Appl Comput Fluid Mech 5:247–258

    Google Scholar 

  • Dufresne M, Dewals B, Erpicum S, Archambeau P, Pirotton M (2012) Flow patterns and sediment deposition in rectangular shallow reservoirs. Water Environ J 26(4):504–510

  • Foss JF, Jones JB (1968) Secondary flow effects in a bounded rectangular jet. J Basic Eng 90:241–248. doi:10.1115/1.3605085

    Article  Google Scholar 

  • Garcia D (2010) Robust smoothing of gridded data in one and higher dimensions with missing values. Comput Stat Data Anal 54:1167–1178. doi:10.1016/j.csda.2009.09.020

    Article  MATH  Google Scholar 

  • Ghidaoui MS, Kolyshkin AA, Liang JH, Chan FC, Li Q, Xu K (2006) Linear and nonlinear analysis of shallow wakes. J Fluid Mech 548:309–340. doi:10.1017/S0022112005007731

    Article  MathSciNet  Google Scholar 

  • Giger M, Dracos T, Jirka GH (1991) Entrainment and mixing in plane turbulent jets in shallow water. J Hydraul Res 29:615–642

    Article  Google Scholar 

  • Graftieaux L, Michard M, Nathalie G (2001) Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas Sci Technol 12:1422–1429

    Article  Google Scholar 

  • Guo B, Langrish AG, Fletcher DF (1998) Time-dependent simulation of turbulent flows in axisymmetric sudden expansions 13th Australian fluid mechanics conference. Monash University, Melbourne, pp 283–286

    Google Scholar 

  • Hauet A (2009) Discharge estimate and velocity measurement in river using Large-Scale Particle Image Velocimetry, Estimation de débit et mesure de vitesse en rivière par Large-Scale Particle image Velocimetry. La Houille Blanche, pp 80–85. doi:10.1051/lhb.2009009

  • Hauet A, Creutin JD, Belleudy P (2008a) Sensitivity study of large-scale particle image velocimetry measurement of river discharge using numerical simulation. J Hydrol 349:178–190. doi:10.1016/j.jhydrol.2007.10.062

    Article  Google Scholar 

  • Hauet A, Kruger A, Krajewski WF et al (2008b) Experimental system for real-time discharge estimation using an image-based method. J Hydrol Eng 13:105–110. doi:10.1061/(ASCE)1084-0699(2008)13:2(105)

    Article  Google Scholar 

  • Holdeman JD, Foss JF (1975) The initiation, development, and decay of the secondary flow in a bounded jet. J Fluids Eng 97:342–352. doi:10.1115/1.3447313

    Article  Google Scholar 

  • Holmes P, Lumley JL, Berkooz G, Rowley CW (2012) Turbulence, coherent structures. Cambridge University Press, Dynamical Systems and Symmetry. Second Edition

    MATH  Google Scholar 

  • Honeyands TA, Molloy AA (1995) Oscillations of submerged jets confined in a narrow deep rectangular cavity 12th Australian Fluid Mechanics Conference. The University of Sydnay, Australia, pp. 493–496

  • Kantoush SA, De Cesare G, Boillat JL, Schleiss AJ (2008) Flow field investigation in a rectangular shallow reservoir using UVP, LSPIV and numerical modelling. Flow Meas Instrum 19:139–144

    Article  Google Scholar 

  • Khan S, Melville BW, Shamseldin AY, Fischer C (2013) Investigation of flow patterns in storm water retention ponds using CFD. J Environ Eng (United States) 139:61–69

    Article  Google Scholar 

  • Kolář V (2007) Vortex identification: new requirements and limitations. Int J Heat Fluid Flow 28:638–652

    Article  Google Scholar 

  • Landel JR, Caulfield CP, Woods AW (2012) Meandering due to large eddies and the statistically self-similar dynamics of quasi-two-dimensional jets. J Fluid Mech 692:347–368. doi:10.1017/jfm.2011.518

    Article  MATH  Google Scholar 

  • Lawson NJ, Davidson MR (2001) Self-sustained oscillation of a submerged jet in a thin rectangular cavity. J Fluids Struct 15:59–81

    Article  Google Scholar 

  • Lombardi M, Caulfield CP, Cossu C, Pesci AI, Goldstein RE (2011) Growth and instability of a laminar plume in a strongly stratified environment. J Fluid Mech 671:184–206

    Article  MATH  MathSciNet  Google Scholar 

  • Mariotti G, Falcini F, Geleynse N, Guala M, Sun T, Fagherazzi S (2013) Sediment eddy diffusivity in meandering turbulent jets: implications for levee formation at river mouths. J Geophys Res F Earth Surf 118:1908–1920. doi:10.1002/jgrf.20134

    Article  Google Scholar 

  • Mullin T, Shipton S, Tavener SJ (2003) Flow in a symmetric channel with an expanded section. Fluid Dyn Res 33:433–452

    Article  MATH  Google Scholar 

  • Oca J, Masaló I (2007) Design criteria for rotating flow cells in rectangular aquaculture tanks. Aquac Eng 36:36–44

    Article  Google Scholar 

  • Peltier Y, Erpicum S, Archambeau P, Pirotton M, Dewals B (2013) Experimental and numerical investigation of meandering jets in shallow reservoir: potential impacts on deposit patterns. In: Nguyen KD, Benoit M, Guillou S, Sheibani N, Philipps JG, Pham Van Bang D (eds) THESIS 2013, Two-phase modelling for sediment dynamics in geophysical flows. SHF - EDF R&D, Chatou

    Google Scholar 

  • Peltier Y, Erpicum S, Archambeau P, Pirotton M, Dewals B (2014) Experimental investigation of meandering jets in shallow reservoir. Environ Fluid Mech. doi:10.1007/s10652-014-9339-2

  • Peng Y, Zhou JG, Burrows R (2011) Modeling free-surface flow in rectangular shallow basins by using lattice Boltzmann method. J Hydraul Eng 137:1680–1685

    Article  Google Scholar 

  • Perrin R, Braza M, Cid E et al (2007) Obtaining phase averaged turbulence properties in the near wake of a circular cylinder at high Reynolds number using POD. Exp Fluids 43:341–355

    Article  Google Scholar 

  • Rempfer D, Fasel HF (1994) Evolution of three-dimensional coherent structures in a flat-plate boundary layer. J Fluid Mech 260:351–375

    Article  Google Scholar 

  • Rowland JC, Stacey MT, Dietrich WE (2009) Turbulent characteristics of a shallow wall-bounded plane jet: experimental implications for river mouth hydrodynamics. J Fluid Mech 627:423–449. doi:10.1017/S0022112009006107

    Article  MATH  Google Scholar 

  • Shim YM, Sharma RN, Richards PJ (2013) Proper orthogonal decomposition analysis of the flow field in a plane jet. Exp Therm Fluid Sci 51:37–55. doi:10.1016/j.expthermflusci.2013.06.014

    Article  Google Scholar 

  • Sirovich L (1987) Turbulence and the dynamics of coherent structures. Part I: coherent structures. Q Appl Math 45:561–570

    MATH  MathSciNet  Google Scholar 

  • Socolofsky SA, Jirka GH (2004) Large-scale flow structures and stability in shallow flows. J Environ Eng Sci 3:451–462. doi:10.1139/S04-032

    Article  Google Scholar 

  • Socolofsky SA, Von Carmer CF, Jirka GH (2003) Shallow turbulent wakes: linear stability analysis compared to experimental data. 1st IAHR International Symposium on Shallow Flows. A. A. Balkema Publishers, Delft, Netherlands, pp. 133–140

  • Söderberg LD, Alfredsson PH (1998) Experimental and theoretical stability investigations of plane liquid jets. Eur J Mech B Fluids 17:689–737

    Article  MATH  Google Scholar 

  • Stovin VR, Saul AJ (2000) Computational fluid dynamics and the design of sewage storage chambers. J Chart Inst Water Environ Manag 14:103–110

    Article  Google Scholar 

  • Thomas FO, Prakash KMK (1991) An experimental investigation of the natural transition of an untuned planar jet. Phys Fluids A Fluid Dyn (1989–1993) 3:90–105. doi:10.1063/1.857867

    Article  Google Scholar 

  • Wahba G (1990) Estimating the smoothing parameter. Spline models for observational data. Society for Industrial Mathematics, Philadelphia, pp 45–65

    Book  Google Scholar 

  • Welch PD (1967) The use of Fast Fourier Transform for the estimation of power spectra: a method based on time-averaging over short, modified periodograms. Reprinted from IEEE, transactions of Audio and Electroacoustics AU15:70–73

  • Westerweel J (1994) Efficient detection of spurious vectors in particle image velocimetry data. Exp Fluids 16:236–247

    Google Scholar 

Download references

Acknowledgments

The research was funded by the University of Liège (Grant SFRD-12/27). The authors are grateful for the assistance provided by the research technicians during the experiments and the fruitful discussions about the POD analysis with Professor Vincent Denoël. The authors are thankful to the two anonymous reviewers, whose remarks allow a substantial improvement of the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Peltier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peltier, Y., Erpicum, S., Archambeau, P. et al. Meandering jets in shallow rectangular reservoirs: POD analysis and identification of coherent structures. Exp Fluids 55, 1740 (2014). https://doi.org/10.1007/s00348-014-1740-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-014-1740-6

Keywords

Navigation