Skip to main content
Log in

Kriging regression of PIV data using a local error estimate

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The objective of the method described in this work is to provide an improved reconstruction of an original flow field from experimental velocity data obtained with particle image velocimetry (PIV) technique, by incorporating the local accuracy of the PIV data. The postprocessing method we propose is Kriging regression using a local error estimate (Kriging LE). In Kriging LE, each velocity vector must be accompanied by an estimated measurement uncertainty. The performance of Kriging LE is first tested on synthetically generated PIV images of a two-dimensional flow of four counter-rotating vortices with various seeding and illumination conditions. Kriging LE is found to increase the accuracy of interpolation to a finer grid dramatically at severe reflection and low seeding conditions. We subsequently apply Kriging LE for spatial regression of stereo-PIV data to reconstruct the three-dimensional wake of a flapping-wing micro air vehicle. By qualitatively comparing the large-scale vortical structures, we show that Kriging LE performs better than cubic spline interpolation. By quantitatively comparing the interpolated vorticity to unused measurement data at intermediate planes, we show that Kriging LE outperforms conventional Kriging as well as cubic spline interpolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. The error matrix is not a ‘nugget effect’, as it does not directly change the correlation matrix and does not represent a cascade of unresolved smaller flowscales [36].

  2. To avoid negative or infinitely large \(\epsilon\), we implement: \(\epsilon_{{\textsc{snr}},i}=\frac{c}{\max(\rm{SNR}_i-SNR_{\rm min},0.01)}\).

  3. A MLE optimization of the Kriging correlation ranges typically results in θ x  = θ y  = 0.26, and in the following, we use a fixed range of θ x  = θ y  = 0.25.

  4. One might conclude that the Low-Fi UM slightly underestimates the measurement uncertainty for high PMR. This conclusion could be attributed to the extremely simple Low-Fi UM; a slightly more sophisticated Low-Fi UM might incorporate the uncertainty associated with the subpixel fit as a lower uncertainty bound–which would roughly amount to \(\epsilon_{\rm subpix} \approx 0.1 {\hbox{m/s}}\) in the present case.

  5. Unlike in mpiv , PPR is defined in Davis.

References

  1. Adrian R (2005) Twenty years of particle image velocimetry. Exp Fluids 39:159–169

    Article  Google Scholar 

  2. Scarano F, Riethmuller ML (2000) Advances in iterative multigrid PIV image processing. Exp Fluids 29:S051–S060

    Article  Google Scholar 

  3. Westerweel J, Scarano F (2005) Universal outlier detection for PIV data. Exp Fluids 39:1096–1100

    Article  Google Scholar 

  4. Theunissen R, Scarano F, Riethmuller ML (2007) An adaptive sampling and windowing interrogation method in PIV. Meas Sci Technol 18(1):275

    Article  Google Scholar 

  5. Elsinga G, Scarano F, Wieneke B, Oudheusden B (2006) Tomographic particle image velocimetry. Exp Fluids 41:933–947

    Article  Google Scholar 

  6. Scarano F (2013) Tomographic PIV: principles and practice. Meas Sci Technol 24(1):012001

    Article  Google Scholar 

  7. Percin M, Eisma H, van Oudheusden B, Remes B, Rujsink R, de Wagter C (2012) Flow visualization in the wake of flapping-wing MAV ‘DelFly II’ in forward flight, In AIAA fluid dynamics and co-located conferences and exhibit New Orleans

  8. Raffel M, Willert CE, Wereley ST, Kompenhans J (2007) Particle Image Velocimetry: a practical guide (2nd ed). Springer, Berlin

    Google Scholar 

  9. Adrian R, Westerweel J (2010) Particle image velocimetry. Cambridge University Press, Cambridge Aerospace Series, Cambridge

    Google Scholar 

  10. Matheron G (1963) Principles of Geostatistics. Econ Geol 58:1246–1266

    Article  Google Scholar 

  11. Gandin L (1965) Objective analysis of meteorological fields: Gidrometeorologicheskoe Izdatel’stvo (GIMIZ), Leningrad. Translated by Israel Program for Scientific Translations, Jerusalem

  12. Cressie N (1990) The origins of Kriging. Math Geol 22(3):239–252

    Article  MATH  MathSciNet  Google Scholar 

  13. Cressie N (1993) Statistics for spatial data. Wiley: New York

    Google Scholar 

  14. Venturi D, Karniadakis GE (2004) Gappy data and reconstruction procedures for flow past a cylinder. J Fluid Mech 519:315–336

    Article  MATH  MathSciNet  Google Scholar 

  15. Gunes H, Sirisup S, Karniadakis GE (2006) Gappy data: to krig or not to krig?. J Comput Phys 212:358–382

    Article  MATH  Google Scholar 

  16. Gunes H, Rist U (2007) Spatial resolution enhancement/smoothing of stereoparticle-imagevelocimetry data using proper-orthogonal decomposition based and kriging interpolation methods. Phys Fluids 19(6):064101-1–064101-19

    Google Scholar 

  17. Gunes H, Rist U (2008) On the use of kriging for enhanced data reconstruction in a separated transitional flat-plate boundary layer. Phys Fluids 20(10):104109-1–104109-19

    Google Scholar 

  18. Raben SG, Charonko JJ, Vlachos PP (2012) Adaptive gappy proper orthogonal decomposition for particle image velocimetry data reconstruction. Meas Sci Technol 23(2):025303

    Google Scholar 

  19. Lophaven S, Nielsen H, Søndergaard J (2002) DACE - A Matlab Kriging Toolbox. Report IMM-REP-2002-12, informatics and mathematical modelling, Technical University of Denmark, p 34, tech. rep

  20. Stamatopoulos C, Mathioulakis D, Papaharilaou Y, Katsamouris A (2011) Experimental unsteady flow study in a patient-specific abdominal aortic aneurysm model. Exp Fluids 50:1695–1709

    Article  Google Scholar 

  21. Spence C, Buchmann N, Jermy M (2012) Unsteady flow in the nasal cavity with high flow therapy measured by stereoscopic PIV. Exp Fluids 52:569–579

    Article  Google Scholar 

  22. Tecplot (2012) Tecplot 360 User’s Manual. http://www.tecplot.com

  23. Karri S, Charonko J, Vlachos PP (2009) Robust wall gradient estimation using radial basis functions and proper orthogonal decomposition (pod) for particle image velocimetry (piv) measured fields. Mea Sci Technol 20(4):045401

    Google Scholar 

  24. Casa LDC, Krueger PS (2013) Radial basis function interpolation of unstructured, three-dimensional, volumetric particle tracking velocimetry data. Meas Sci Technol 24(6):065304

    Google Scholar 

  25. JC for Guides in Metrology (JCGM) (1995) Guide to the expression of uncertainty in measurement (GUM)

  26. Timmins B, Wilson B, Smith B, Vlachos P (2012) A method for automatic estimation of instantaneous local uncertainty in particle image velocimetry measurements. Exp Fluids 53:1133–1147

    Article  Google Scholar 

  27. Charonko JJ, Vlachos PP (2013) Estimation of uncertainty bounds for individual particle image velocimetry measurements from cross-correlation peak ratio. Meas Sci Technol 24(6):065301

    Google Scholar 

  28. Wikle CK, Berliner LM (2007) A Bayesian tutorial for data assimilation. Phys D Nonlinear Phenom 230(1–2):1–16

    Article  MATH  MathSciNet  Google Scholar 

  29. Mardia KV, Marshall RJ (1984) Maximum Likelihood Estimation of Models for Residual Covariance in Spatial Regression. Biometrika 71(1):135–146

    Article  MATH  MathSciNet  Google Scholar 

  30. Kitanidis PK, Lane RW (1985) Maximum likelihood parameter estimation of hydrologic spatial processes by the Gauss-Newton method. J Hydrol 79(1–2):53–71

    Article  Google Scholar 

  31. Kitanidis PK (1986) Parameter uncertainty in estimation of spatial functions: Bayesian analysis. Water Resour Res 22(4):499–507

    Article  Google Scholar 

  32. Mardia KV (1989) Maximum likelihood estimation for spatial models. Proceedings from the symposium on spatial statistics: past, present, and future, pp 203–253

  33. de Baar J, Dwight R, Bijl H (2013) Speeding up kriging through fast estimation of the hyperparameters in the frequency-domain. Comput Geosci 54:99–106

    Article  Google Scholar 

  34. Chiles J, Delfiner P (2012) Geostatistics, Modeling Spatial Uncertainty, 2nd Edn. Wiley, New York

    Book  Google Scholar 

  35. de Baar J, Dwight R, Bijl H Improvements to Gradient-Enhanced Kriging using a Bayesian perspective, Int J Uncertain Quantif, In production

  36. Matheron G (1971) Les Cahiers du Centre de Morphologie Mathematique: The theory of regionalized variables and its application. Ecole Nationale Superieure des Mines de Paris

  37. Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat Assoc, pp 335–341

  38. Mori N (2009) mpiv. http://www.oceanwave.jp/softwares/mpiv

  39. Keane RD, Adrian RJ (1992) Theory of cross-correlation analysis of piv images. Appl Sci Res 49(3):191–215

    Article  Google Scholar 

  40. Witten I, Frank E, Hall M (2011) Data mining, practical machine learning tools and techniques, 3rd Edn. Morgan Kaufmann, Burlington

    Google Scholar 

  41. Percin M, Eisma HE, de Baar JHS, van Oudheusden BW, Remes B, Ruijsink R, de Wagter C (2012) Wake reconstruction of flapping-wing MAV DelFly II in forward flight. Int Micro Air Vehicle Conf Flight Compet, July 2012, Braunschweig Germany

Download references

Acknowledgments

We are very grateful for the financial support by Technologiestichting STW, project number 10113 and 11023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jouke H. S. de Baar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 282 KB)

Supplementary material 2 (PDF 203 KB)

Appendix: Detailed mpiv settings

Appendix: Detailed mpiv settings

For the cross-correlation of the synthetic images in Sect. 3, we use the following general settings: nx_window = 32; ny_window = 32; overlap_x = 0; overlap_y = 0; iu_max = 0; iv_max = 0; dt = 0.01; piv_type = ’cor’; i_recur = 2; i_plot = 0; By default mpiv assigns NaN to vectors with a SNR or PPR below 3.00, however, we want to control the SNR min top-level. Therefore, in the files piv_cor.m and piv_crs.m , we change these settings: r_SNR = 0.00; r_PPR = 0.00.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Baar, J.H.S., Percin, M., Dwight, R.P. et al. Kriging regression of PIV data using a local error estimate. Exp Fluids 55, 1650 (2014). https://doi.org/10.1007/s00348-013-1650-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-013-1650-z

Keywords

Navigation