Skip to main content
Log in

Plasma control of vortex flow on a delta wing at high angles of attack

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The flow over a delta wing at high angles of attack is characterized by the presence of two large-scale primary vortices on the leeward side of the wing. These vortices contribute substantially to lift production at high angles of attack. Therefore, vortex breakdown, which can be induced by unfavorable pressure gradients or free-stream disturbances, can lead to an abrupt decrease in lift and to the emergence of a roll moment. Thus, the possibility of vortex flow control can be very useful. The problem of vortex flow control is investigated experimentally under subsonic flow parameters in the range of wing chord-based Reynolds number (0.14, 0.25) × 106. A dielectric barrier discharge (DBD) is used as an active control actuator. The data obtained by means of oil flow and smoke flow visualization, surface pressure measurements, and using a particle image velocimetry technique show that the DBD can provoke early vortex bursting. Under certain conditions (discharge excitation mode and frequency), flow excitation by the discharge actuator is found to result in vortex stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. http://www.polis-instruments.ru.

Abbreviations

A 1 :

Primary vortex attachment line

A 2 :

Secondary vortex attachment line

C p :

Pressure coefficient, (p − p 0)/q  + 1

c :

Wing root chord length (mm)

f :

Discharge frequency in continuous mode (kHz)

F :

Pulse packet repetition frequency in burst mode (Hz)

F + :

Reduced frequency, F c/U

p :

Static pressure on the model surface (Pa)

p 0 :

Total pressure (Pa)

S 2 :

Secondary vortex separation line

t :

Time (s)

q :

Mean free-stream dynamic pressure (Pa)

U :

Mean free-stream velocity (m/s)

W :

Discharge power (Watt)

x :

Vortex breakdown position along the wing chord (mm)

y :

Vertical direction perpendicularly xz-plane (mm)

z :

Transversal direction along the wing span (mm)

α :

Angle of attack (°)

ω :

Flow vorticity in xy-plane (1/s)

χ:

Leading edge sweep angle (°)

∞:

Free-stream condition

0:

At zero local mean velocity

References

  • Baird C, Enloe CL, McLaughlin TE and Baughn JW (2005) Acoustic testing of the dielectric barrier discharge (DBD) plasma actuator. AIAA 2005-565, AIAA 43rd aerospace sciences meeting and exhibit, Reno, NV. doi:10.2514/6.2005-565

  • Delery J (1994) Aspects of vortex breakdown. Prog Aerosp Sci 30:1–59. doi:10.1016/0376-0421(94)90002-7

    Article  Google Scholar 

  • Enloe CL, McLaughlin TE, VanDyken RD, Kachner KD, Jumper EJ, Corke TC (2004) Mechanisms and responses of a single dielectric barrier plasma actuator: plasma morphology. AIAA J 42(3):589–594

    Article  Google Scholar 

  • Forte M, Jolibois J, Pons J, Moreau E, Touchard G, Cazalens M (2007) Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control. Exp Fluids 43(6):917–928

    Article  Google Scholar 

  • Gad-El-Hak M, Blackwelder RF (1985) The discrete vortices from a delta wing. AIAA J 23(6):961–962

    Article  Google Scholar 

  • Greenblatt D, Kastantin Y, Nayeri CN, Paschereit CO (2008) Delta-wing flow control using dielectric barrier discharge actuators. AIAA J 46(6):1554–1560

    Article  Google Scholar 

  • Gursul I, Yang H, Deng Q (1995) Control of vortex breakdown with leading-edge devices. AIAA-95-0676, 33rd AIAA aerospace sciences meeting and exhibit, Reno, NV

  • Guy Y, Morrow JA, McLaughlin TE (1999) Control of vortex breakdown on a delta wing by periodic blowing and suction. AIAA-99-0132, 37th AIAA aerospace sciences meeting and exhibit, Reno, NV

  • Hall MG (1972) Vortex breakdown. Annu Rev Fluid Mech 4:195–218

    Article  Google Scholar 

  • Johnson FT, Lu P, Brune GW, Weber JA, Rubbert PE (1976) An improved method for the prediction of completely three-dimensional aerodynamic load distributions of configurations with leading edge vortex separation. AIAA paper, pp 76–417

  • Kwak D-Y, Nelson RC (2010) Vortical flow control over delta wings with different sweep back angles using DBD plasma actuators. AIAA 2010-4837, AIAA 5th flow control conference, Chicago, IL

  • Lamar JE (1980) Analysis and design of stake-wing configuration. J Aircr 17(1):20–27

    Article  Google Scholar 

  • Lee M, Ho C-M (1990) Lift force of delta wings. Appl Mech Rev 43(9):209–221. doi:10.1115/1.3119169

    Article  Google Scholar 

  • Leibovich S (1984) Vortex stability and breakdown: survey and extension. AIAA J 22(9):1192–1206

    Article  Google Scholar 

  • Mabey DG (1997) Similitude relations for buffet and wing rock on delta wings. Progr Aero Sci 33:481–511. doi:10.1016/S0376-0421(97)00003-1

    Article  Google Scholar 

  • Marchman JF III (1981) Effectiveness of leading-edge vortex flaps on 60 and 75 degree delta wings. J Aircr 18(4):280–286

    Article  Google Scholar 

  • Maslov AA, SidorenkoAA, et al (2008) Plasma control of flow separation on swept wing at high angles of attack. AIAA 2008-540, AIAA 46th aerospace sciences meeting and exhibit, Reno, NV. doi:10.2514/6.2008-540

  • Mitchell AM, Molton P, Barberis D, Gobert JL (2000) Control of vortex breakdown by along the core blowing. AIAA-00-2608, AIAA fluids 2000 conference, Denver, CO

  • Moreau E (2007) Airflow control by non-thermal plasma actuators. J Phys D Appl Phys 40:605. doi:10.1088/0022-3727/40/3/S01

    Article  Google Scholar 

  • Owens DB, Perkins J (1995) Vortex suppression on highly-swept wings by suction boundary-layer control. AIAA 95-0683, 33rd aerospace sciences meeting and exhibit, Reno, NV

  • Payne FM, Ng TT, Nelson RC, Schiff LB (1988) Visualization and wake surveys of vortical flow over a delta wing. AIAA J 26(2):137–143

    Article  Google Scholar 

  • Rockwell D (1993) Three-dimensional flow structure on delta wings at high angle-of-attack: experimental concepts and issues. AIAA 93-0550, 31st aerospace sciences meeting and exhibit, Reno, NV

  • Roos FW and Kegelman JT (1990) An experimental investigation of sweep angle influence on delta-wing flows. Technical report AIAA 90-0383

  • Roth JR, Xin Dai (2006) Optimization of the aerodynamic plasma actuator as an electrohydrodynamic (EHD) electrical device. AIAA 2006-1203, AIAA 44th aerospace sciences meeting and exhibit, Reno, NV. doi:10.2514/6.2006-1203

  • Roth JR, Wilkinson SP (1998) Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma. AIAA-98-0328, AIAA 36th aerospace sciences meeting and exhibit, Reno, NV. doi:10.2514/6.1998-328

  • Sidorenko AA, Budovsky AD, Pushkarev AV, Maslov AA (2008) Flight testing of DBD plasma separation control system. AIAA 2008-373, AIAA 46th aerospace sciences meeting and exhibit, Reno, NV. doi:10.2514/6.2008-373

  • Sidorenko AA, Budovsky AD, Polivanov PA, Maslov AA (2012) Study of dielectric barrier discharge in flight experiments. 16th international conference on the methods of aerophysical research (ICMAR’2012) (Kazan, Russia, 19–25 Aug, 2012): abstracts. Pt.II. -Kazan, 2012, pp 251–252

  • Traub LW, Galls LW (1996) Reynolds number effects on vortex breakdown of a blunt-edged delta. J Aircr 33(4):835–837

    Article  Google Scholar 

  • Visbal MR, Gaitonde DV (2006) Control of vortical flows using simulated plasma actuators. AIAA 2006-505, AIAA 44th aerospace sciences meeting and exhibit, Reno, NV. doi:10.2514/6.2006-505

  • Wentz WH, Kohlman DL (1968) Wind tunnel investigations of vortex breakdown on slender sharp-edged wings. Technical report FRL 68-013, University of Kansas Center for Research, Inc.

  • Zverkov ID, Zanin BV, Kozlov VV (2008) Investigation of disturbances growth in boundary layers on classical and wavy surface wings. AIAA J 46:3149–3158. doi:10.2514/1.37562

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey A. Sidorenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sidorenko, A.A., Budovskiy, A.D., Maslov, A.A. et al. Plasma control of vortex flow on a delta wing at high angles of attack. Exp Fluids 54, 1585 (2013). https://doi.org/10.1007/s00348-013-1585-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-013-1585-4

Keywords

Navigation