Skip to main content
Log in

Phase-locked 3D3C-MRV measurements in a bi-stable fluidic oscillator

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

In this work, the phase-resolved internal flow of a bi-stable fluidic oscillator was measured using phase-locked three-dimensional three-components magnetic resonance velocimetry (3D3C-MRV), also termed as 4D-MRV. A bi-stable fluidic oscillator converts a continuous inlet-mass flow into a jet alternating between two outlet channels and, as a consequence provides an unsteady, periodic flow. This actuator can therefore be used as flow-control actuator. Since data acquisition in a 3D volume takes up to several minutes, only a small portion of the data is acquired in each flow cycle for every time point of the flow cycle. The acquisition of the entire data set is segmented over many cycles of the periodic flow. This procedure allows to measure phase-averaged 3D3C velocity fields with a certain temporal resolution. However, the procedure requires triggering to the periodic nature of the flow. Triggering the MR scanner precisely on each flow cycle is one of the key issues discussed in this manuscript. The 4D-MRV data are compared to data measured using phase-locked laser Doppler anemometry and good agreement between the results is found. The validated 4D-MRV data is analyzed and the fluid-mechanic features and processes inside the fluidic oscillator are investigated and described, providing a detailed description of the internal jet-switching mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Arwatz G, Fono I, Seifert A (2008) Suction and oscillatory blowing actuator modeling and validation. AIAA J 46(5):1107–1117

    Article  Google Scholar 

  • Canstein C, Cachot P, Faust A, Stalder AF, Bock J, Frydrychowicz A, Küffer J, Hennig J, Markl M (2008) 3D MR flow analysis in realistic rapid-prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries. Magn Reson Med 59(3):535–546

    Article  Google Scholar 

  • Cattafesta LN, Sheplak M (2011) Actuators for active flow control. Annu Rev Fluid Mech 43(1):247–272

    Article  Google Scholar 

  • Coanda H (1936) Device for deflecting a stream of elastic fluid projected into an elastic fluid. Pat. No. 2052869

  • Darabi A, Wygnanski I (2004) Active management of naturally separated flow over a solid surface. Part 1. The forced reattachment process. J Fluid Mech 510:105–129. doi:10.1017/S0022112004009231

    Article  MATH  Google Scholar 

  • Elkins C, Markl M, Pelc N (2003) 4D magnetic resonance velocimetry for mean velocity measurements in complex turbulent Flows. Exp Fluids 34:494–503

    Google Scholar 

  • Elkins CJ, Alley MT (2007) Magnetic resonance velocimetry: applications of magnetic resonance imaging in the measurement of fluid motion. Exp Fluids 43(6):823–858 doi:10.1007/s00348-007-0383-2

    Article  Google Scholar 

  • Gokoglu S, Kuczmarski M, Culley D, Raghu S (2009) Numerical studies of a fluidic diverter for flow control. In: AIAA proceedings, December. American Institute of Aeronautics and Astronautics, 1801 Alexander Bell Dr, Suite 500 Reston VA 20191-4344 USA

  • Gregory JW, Sullivan JP, Raghu S (2005) Visualization of jet mixing in a fluidic oscillator. J Vis 8(2):169–176

    Article  Google Scholar 

  • Grundmann S, Wassermann F, Lorentz R, Jung B, Tropea C (2012) Experimental investigation of helical structures in swirling flow. Int J Heat Fluid Flow 37:51–63

    Article  Google Scholar 

  • Guyot D, Paschereit C, Raghu S. (2009) Active combustion control using a fluidic oscillator for asymmetric fuel flow modulation. Int J Flow Control 1(2):155–166

    Article  Google Scholar 

  • Haacke M, Brown R, Thompson M, Venkatesan R (1999) Magnetic resonance imaging: physical principles and sequence design. Wiley, New York

    Google Scholar 

  • Huang F, Akao J, Vijayakumar S, Duensing GR, Limkeman M (2005) k-t GRAPPA: a k-space implementation for dynamic MRI with high reduction factor. Magn Reson Med 54(5):1172–1184

    Article  Google Scholar 

  • Koso T, Kawaguchi S, Hojo M, Hayami H (2002) Flow mechanism of a self-induced oscillating jet issued from a flip-flop jet nozzle. In: JSME-KSME fluids engineering conference, vol 5, pp 1–6

  • Markl M, Chan FP, Alley MT, Wedding KL, Draney MT, Elkins CJ, Parker DW, Wicker R, Taylor Ca, Herfkens RJ, Pelc NJ (2003) Time-resolved three-dimensional phase-contrast MRI. J Magn Reson Imaging 17(4):499–506

    Article  Google Scholar 

  • Nishri B, Wygnanski I. (1998) Effects of periodic excitation on turbulent flow separation from a flap. AIAA J 36(6):547–556

    Article  Google Scholar 

  • Nitsche W, Mirow P, Szodruch J (1989) Piezo-electric foils as a means of sensing unsteady surface forces. Exp Fluids 7(2):111–118

    Article  Google Scholar 

  • Raman G, Packiarajan S, Papadopoulos G, Weissman C, Raghu S (2005) Jet thrust vectoring using a miniature fluidic oscillator. Aeronaut J 109(1093):129–138

    Google Scholar 

  • Raman G, Rice E, Cornelius D (1994) Evaluation of flip-flop jet nozzles for use as practical excitation devices. J Fluids Eng 116(3):508–515

    Article  Google Scholar 

  • Seele R, Tewes P, Woszidlo R, McVeigh Ma, Lucas NJ, Wygnanski IJ (2009) Discrete sweeping jets as tools for improving the performance of the V-22. J Aircr 46(6):2098–2106

    Article  Google Scholar 

  • Seifert A, Bachar T, Koss D, Shepshelovich M, Wygnanski I (1993) Oscillatory blowing: a tool to delay boundary-layer separation. AIAA J 31:2052–2060

    Article  Google Scholar 

  • Seifert A, Stalnov O, Sperber D, Arwatz G (2009) Large trucks drag reduction using active flow control. Lecture notes in Applied and Computational Mechanics. Springer, Berlin, pp 115–131

  • Spyropoulos CE (1964) A sonic oscillator. In: Proceedings of the fluid amplification symposium, vol. III. Harry Diamond Laboratories, Washington, DC, pp 27–51

  • Tesar V, Bandalusena HCH (2010) Bistable diverter valve in microfluidics. Exp Fluids 50(5):1225–1233

    Article  Google Scholar 

  • Tesar V, Hung C, Zimmerman W (2006) No-moving-part hybrid-synthetic jet actuator. Sens Actuators A Phys 125(2):159–169

    Article  Google Scholar 

  • Viets H (1975) Flip-Flop jet nozzle. AIAA J 13(10):1375–1379

    Article  Google Scholar 

  • Yang JT, Chen CK, Tsai KJ, Lin WZ, Sheen HJ (2007) A novel fluidic oscillator incorporating step-shaped attachment walls. Sens Actuators A Phys 135(2):476–483

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Wassermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wassermann, F., Hecker, D., Jung, B. et al. Phase-locked 3D3C-MRV measurements in a bi-stable fluidic oscillator. Exp Fluids 54, 1487 (2013). https://doi.org/10.1007/s00348-013-1487-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-013-1487-5

Keywords

Navigation