Skip to main content
Log in

Experimental characterization of the initial zone of an annular jet with a very large diameter ratio

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This article presents an experimental investigation of a large diameter ratio annular air jet by particle image velocimetry, Laser Doppler Anemometry, hot-wire anemometry and time-resolved tomography. Annular jets consist of a round nozzle with an obstacle placed in its center. These jets are thus defined by an external and an internal diameter corresponding to the round nozzle lips and the diameter of the obstacle, respectively. The ratio between these two diameters defines the behavior of the flow across a characteristic diameter called diameter ratio. In most industrial applications these jets have large diameter ratios, superior to 0.7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Aly MS, Rashed MII (1991) Experimental investigation of an annular jet. J Wind Eng Ind Aerodyn 37:155–166

    Article  Google Scholar 

  • Benney D (1961) A non-linear theory for oscillations in a parallel flows. J Fluid Mech 10:209–236

    Article  MathSciNet  MATH  Google Scholar 

  • Bernal L, Roshko A (1986) Streamwise vortex structure in plane mixing layers. J Fluid Mech 170:499–525

    Article  Google Scholar 

  • Brendel M (2002) CFD analysis of laboratory exhaust fans and applications. Ashrae winter annual meeting

  • Brown G, Roshko A (1974) On density effects and large structures in turbulent mixing layers. J Fluid Mech 64:775–814

    Article  Google Scholar 

  • Chigier NA, Beer JM (1964) The flow region near the nozzle in double concentric jets. Trans ASME D: J Basic Eng 86:797–804

    Google Scholar 

  • Crow SC, Champagne FH (1971) Orderly structure in jet turbulence. J Fluid Mech 48:547–591

    Article  Google Scholar 

  • Danlos A, Rouland E, Patte-Rouland B (2008) Proper orthogonal decomposition used for aerodynamic study and active control of annular jet instabilities using acoustic excitations. In: 6th IASME/WSEAS international conference on fluid mechanics and aerodynamics, Rhodes, Greece

  • Davies TW, Beer JM (1971) Flow in the wake of bluff-body flame stabilizers. In: Thirteenth symposium on combustion, The Combustion Institute, 631–638

  • Del Taglia C (2003) Numerical investigation of the non-reacting unsteady flow behind a disk stabilized burner with large blockage. PhD, University of Rome “La Spienza”

  • Del Taglia C, Blum L, Ventikos Y, Poulikakos D (2004) Numerical and experimental investigation of an annular jet flow with large blockage. J Fluids Eng 126:375–384

    Article  Google Scholar 

  • Foss JF, Prevost RJ, Bade KM and Levasseur A (2003) The velocity field of an annular jet with cross-member. In: Proceeding of FEDSM’03, Honolulu

  • Gaster M, Bradbury LJS (1976) The measurement of the spectra of highly turbulent flows by a randomly triggered pulsed-wire anemometer. J Fluid Mech 77:499–509

    Article  Google Scholar 

  • Godard G, Rouland B, Paranthoen P, Lecordier JC (1998) Développement d’un jet annulaire continu ou partiellement obturé. In: 6eme congrès Francophone de Vélocimétrie Laser, Saint Louis

  • Graftieux L,Michard M, Grosjean N (2000) Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. In: EuroMech 411, European Mechanics Society

  • Holmes P, Lumley JL, Berkooz G (1996) Turbulence, coherent structures, dynamical systems and symmetry. Cambridge monographs on mechanics

  • Huang RF, Chen CF, Lin CL, Bear GM (1994) Smoke wire flow visualization of the near-wake region behind a circular disk at low Reynolds numbers. Exp Fluids 17:259–266

    Google Scholar 

  • Hussain AKMF, Ramjee V (1976) Effects of the axisymmetric contraction shape on incompressible turbulent flow. Trans ASME: J Fluids Eng 98:58–69

    Google Scholar 

  • Hussain AKMF, Zaman KBMQ (1980) Vortex pairing in a circular jet under controlled excitation. Part 2. Coherent structure dynamics. J Fluid Mech 101/3:493–544

    Article  Google Scholar 

  • Ko NWK, Chan WT (1978) Similarity in the initial region of annular jets: three configurations. J Fluid Mech 84(4):641–656

    Article  Google Scholar 

  • Ko NWK, Leung KC (1982) Covariance measurements in the initial region of an annular jet. J Sound Vib 80(3):339–354

    Article  Google Scholar 

  • Ko NWM, Lau KK, Lam KM (1998) Dynamics of interaction modes in excited annular jets. Exp Therm Fluid Sci 1:319–338

    Article  Google Scholar 

  • Lalizel G (2004) Caractérisation expérimentale de l’aérodynamique d’un jet annulaire à très grand rapport de diamètres. PhD Thesis, University of Rouen, France

  • Li X, Tankin R (1987) A study of cold and combusting flow around bluff-body combustors. Combust Sci Technol 52:173–206

    Article  Google Scholar 

  • Michalke A, Hermann G (1982) On the inviscid instability of a circular jet with external flow. J Fluid Mech 114:343–359

    Article  MATH  Google Scholar 

  • Patte-Rouland B, Lalizel G, Moreau J, Rouland E (2001) Flow analysis of an annular jet by particle image velocimetry and proper orthogonal decomposition. Meas Sci Technol 12:1404–1412

    Article  Google Scholar 

  • Pierrehumbert R, Widnall S (1982) The two and three-dimensional instabilities of a spatially periodic shear layer. J Fluid Mech 245:642–668

    Google Scholar 

  • Saric WS (1994) Görtler Vortices. Ann Rev Fluid Mech 26:379–409

  • Sheffer RW, Namazian M, Kelly M, Perrin M (1996) Effect of confinement on Bluff-Body burner recirculation zone characteristics and flame stability. Combust Sci Technol 120:185–211

    Article  Google Scholar 

  • Van Maanen HRE, Nobach H, Benedict LH (1999) Improved estimator for the slotted autocorrelation function of randomly sampled LDA data. Meas Sci Technol 10(1):L4–L7

    Article  Google Scholar 

  • Vanierschot M, Van Den Bulck E (2011) Experimental study of low precessing frequencies in the wake of a turbulent annular jet. Exp Fluids 50:189–200

    Article  Google Scholar 

  • Warda HA, Kassab SZ, Elshorbagy KA, Elsaadawy EA (1998) An experimental investigation of the near field region of free turbulent round central and annular jets. Flow Meas Instrum 10:1–14

    Article  Google Scholar 

  • Weiss F (1999) Etude expérimentale de la diffusion de la chaleur en aval d’une source linéaire place dans une allée de Bénard-Von Karman. Thèse de doctorat de l’Université de Rouen

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amélie Danlos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danlos, A., Lalizel, G. & Patte-Rouland, B. Experimental characterization of the initial zone of an annular jet with a very large diameter ratio. Exp Fluids 54, 1418 (2013). https://doi.org/10.1007/s00348-012-1418-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-012-1418-x

Keywords

Navigation