Skip to main content
Log in

Evaluation of thrust measurement techniques for dielectric barrier discharge actuators

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Despite its popularity in the recent literature, plasma actuators lack a consistent study to identify limitations, and remedy thereof, of various thrust measurement techniques. This paper focuses on comparing two different experimental techniques commonly used to measure the global, plasma-induced thrust. A force balance is used to make a direct measurement of the thrust produced, which is then compared with a control volume analysis on data obtained through particle image velocimetry. The local velocity measured by particle image velocimetry is also validated with a fine-tip pressure probe. For the direct thrust measurements, the effect of varying the actuator plate length upon which the induced flow acts is investigated. The results from these tests show that the length of the actuator plate is most influential at higher voltages with the measured thrust increasing as much as 20 % for a six times reduction in the length of the plate. For the indirect thrust measurement, the influence of the control volume size is analyzed. When the two methods are compared against each other, good agreement is found when the control volume size has a sufficient downstream extent. Also, the discharge length is optically measured using visible light emission. A linear correlation is found between the discharge length and the thrust measurements for the actuator configurations studied. Finally, the energy conversion efficiency curve for a representative actuator is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abe T, Takizawa Y, Sato S, Kimura N (2008) Experimental study for momentum transfer in a dielectric barrier discharge plasma actuator. AIAA J 46(9):2248–2256

    Article  Google Scholar 

  • Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge University Press, Cambridge

    Google Scholar 

  • Baughn JW, Porter CO, Peterson BL, McLaughlin TE, Enloe CL, Font GI, Baird C (2006) Momentum transfer for an aerodynamic plasma actuator with an imposed boundary layer. In: 44th AIAA aerospace sciences meeting. AIAA 2006-168

  • Borghi CA, Carraro MR, Cristofolini A, Neretti G (2008) Electrohydrodynamic interaction induced by a dielectric barrier discharge. J Appl Phys 103(6):063304

    Article  Google Scholar 

  • Cheong M, Greig A, Gibson B, Arjomandi M (2011) An investigation into the effect of electric field on the performance of dielectric barrier discharge plasma actuators. Exp Therm Fluid Sci 35(8):1600–1607

    Article  Google Scholar 

  • Corke TC, Post ML, Orlov DM (2007) Sdbd plasma enhanced aerodynamics: concepts, optimization and applications. Prog Aerosp Sci 43(7–8):193–217

    Article  Google Scholar 

  • Debien A, Benard N, David L, Moreau E (2012) Unsteady aspect of the electrohydrodynamic force produced by surface dielectric barrier discharge actuators. Appl Phys Lett 100(1):013901. doi:10.1063/1.3674308

    Google Scholar 

  • Enloe CL, McLaughlin TE, Vandyken RD, Kachner KD, Jumper EJ, Corke TC (2004) Mechanisms and responses of a single dielectric barrier plasma actuator: plasma morphology. AIAA J 42(3):589–594

    Article  Google Scholar 

  • Enloe CL, McLaughlin TE, Font GI, Baughn JW (2006) Parameterization of temporal structure in the single-dielectric-barrier aerodynamic plasma actuator. AIAA J 44(6):1127–1136

    Article  Google Scholar 

  • Enloe CL, Font GI, McLaughlin TE, Orlov DM (2008a) Surface potential and longitudinal electric field measurements in the aerodynamic plasma actuator. AIAA J 46(11):2730–2740

    Article  Google Scholar 

  • Enloe CL, McHarg MG, McLaughlin TE (2008b) Time-correlated force production measurements of the dielectric barrier discharge plasma aerodynamic actuator. J Appl Phys 103(7):073302

    Article  Google Scholar 

  • Enloe CL, McHarg MG, Font GI, McLaughlin TE (2009) Plasma-induced force and self-induced drag in the dielectric barrier discharge aerodynamic plasma actuator. In: 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition. AIAA 2009-1622

  • Font GI, Enloe CL, McLaughlin TE (2010) Plasma volumetric effects on the force production of a plasma actuator. AIAA J 48(9):1869–1874. doi:10.2514/1.51660

    Google Scholar 

  • Font GI, Enloe CL, Newcomb JY, Teague AL, Vasso AR, McLaughlin TE (2011) Effects of oxygen content on dielectric barrier discharge plasma actuator behavior. AIAA J 49(7):1366–1373. doi:10.2514/1.55031

    Google Scholar 

  • Forte M, Jolibois J, Pons J, Moreau E, Touchard G, Cazalens M (2007) Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control. Exp Fluids 43:917–928. doi:10.1007/s00348-007-0362-7

    Article  Google Scholar 

  • Gibalov VI, Pietsch GJ (2000) The development of dielectric barrier discharges in gas gaps and on surfaces. J Phys D Appl Phys 33(20):2618

    Article  Google Scholar 

  • Gibson BA, Arjomandi M, Kelso RM (2012) The response of a flat plate boundary layer to an orthogonally arranged dielectric barrier discharge actuator. J Phys D Appl Phys 45(2):025202

    Article  Google Scholar 

  • Grundmann Sven, Tropea Cameron (2009) Experimental damping of boundary-layer oscillations using dbd plasma actuators. Int J Heat Fluid Flow 30(3):394–402

    Article  Google Scholar 

  • Hoskinson AR, Hershkowitz N (2010) Differences between dielectric barrier discharge plasma actuators with cylindrical and rectangular exposed electrodes. J Phys D Appl Phys 43(6):065205

    Article  Google Scholar 

  • Hoskinson AR, Hershkowitz N, Ashpis DE (2008) Force measurements of single and double barrier dbd plasma actuators in quiescent air. J Phys D Appl Phys 41(24):245209

    Article  Google Scholar 

  • Jolibois J, Moreau E (2009) Enhancement of the electromechanical performances of a single dielectric barrier discharge actuator. Dielectr Electr Insulation IEEE Trans 16(3):758–767

    Article  Google Scholar 

  • Jukes TN, Choi K-S (2009) Long lasting modifications to vortex shedding using a short plasma excitation. Phys Rev Lett 102:254501

    Article  Google Scholar 

  • Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23:1–46. doi:10.1023/A:1022470901385

    Article  Google Scholar 

  • Kotsonis M, Ghaemi S, Veldhuis L, Scarano F (2011) Measurement of the body force field of plasma actuators. J Phys D Appl Phys 44(4):045204

    Article  Google Scholar 

  • Kriegseis J (2011a) Performance characterization and quantification of dielectric barrier discharge plasma actuators. Ph.D thesis, TU Darmstadt

  • Kriegseis J, Grundmann S, Tropea C (2011b) Power consumption, discharge capacitance and light emission as measures for thrust production of dielectric barrier discharge plasma actuators. J Appl Phys 110(1):013305

    Article  Google Scholar 

  • Labergue A, Moreau E, Zouzou N, Touchard G (2007) Separation control using plasma actuators: application to a free turbulent jet. J Phys D Appl Phys 40(3):674

    Article  Google Scholar 

  • Little Jesse, Nishihara Munetake, Adamovich Igor, Samimy Mo (2010) High-lift airfoil trailing edge separation control using a single dielectric barrier discharge plasma actuator. Exp Fluids 48:521–537. doi:10.1007/s00348-009-0755-x

    Article  Google Scholar 

  • Opaits DF, Shneider MN, Miles RB, Likhanskii AV, Macheret SO (2008) Surface charge in dielectric barrier discharge plasma actuators. Phys Plasmas 15(7):073505

    Article  Google Scholar 

  • Post ML, Corke TC (2004) Separation control on high angle of attack airfoil using plasma actuators. AIAA J 42(11):2177–2184

    Article  Google Scholar 

  • Ramakumar K, Jacob JD (2005) Flow control and lift enhancement using plasma actuators. In: 35th AIAA fluid dynamics conference and exhibit. AIAA 2005-4635

  • Rizzetta DonaldP, Visbal MiguelR (2008) Plasma-based flow-control strategies for transitional highly loaded low-pressure turbines. J Fluids Eng 130(4):041104

    Article  Google Scholar 

  • Roth JR, Dai X (2006) Optimization of the aerodynamic plasma actuator as an electrohydrodynamic (ehd) electrical device. In: 44th AIAA aerospace sciences meeting and exhibit. AIAA 2006-1203

  • Roth JR, Sherman DM, Wilkinson SP (2000) Electrohydrodynamic flow control with a glow-discharge surface plasma. AIAA J 38(7):1166–1172

    Article  Google Scholar 

  • Schatzman DM, Thomas FO (2010) Turbulent boundary-layer separation control with single dielectric barrier discharge plasma actuators. AIAA J 48(8):1620–1634

    Article  Google Scholar 

  • Thomas FO, Kozlov A, Corke TC (2005) Plasma actuators for landing gear noise reduction. In: 11th AIAA/CEAS aeroacoustics conference (26th AIAA Aeroacoustics Conference). AIAA 2005-3010

  • Thomas FO, Kozlov A, Corke TC (2008) Plasma actuators for cylinder flow control and noise reduction. AIAA J 46(8):1921–1931

    Article  Google Scholar 

  • Thomas F, Corke T, Iqbal M, Kozlov A, Schatzman D (2009) Optimization of dielectric barrier discharge plasma actuators for active aerodynamic flow control. AIAA J 47(9):2169–2178

    Article  Google Scholar 

  • TSI (2000) Model 9302 atomizer, instruction manual. TSI Inc., St. Paul, MN

    Google Scholar 

  • Westerweel J (1994) Efficient detection of spurious vectors in particle image velocimetry data. Exp Fluids 16:236–247. doi:10.1007/BF00206543

    Article  Google Scholar 

  • Xu X (2001) Dielectric barrier discharge—properties and applications. Thin Solid Films 390(1–2):237–242

    Article  Google Scholar 

  • Zito J, Durscher R, Soni J, Roy S, Arnold D (2012) Flow and force inducement using micro size dielectric barrier discharge actuators. Appl Phys Lett 100:193502

    Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored in part under Air Force Office of Scientific Research Grants #FA9550-09-1-0372 and #FA9550-09-1-0615 monitored by Dr. Doug Smith and Charles Suchomel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durscher, R., Roy, S. Evaluation of thrust measurement techniques for dielectric barrier discharge actuators. Exp Fluids 53, 1165–1176 (2012). https://doi.org/10.1007/s00348-012-1349-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-012-1349-6

Keywords

Navigation