Skip to main content
Log in

Wingtip vortex control via the use of a reverse half-delta wing

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The effect of a 65° sweep reverse half-delta wing (RHDW), mounted at the squared tip of a rectangular NACA 0012 wing, on the tip vortex was investigated experimentally at Re = 2.45 × 105. The RHDW was found to produce a weaker tip vortex with a lower vorticity level and, more importantly, a reduced lift-induced drag compared to the baseline wing. In addition to the lift increment, the RHDW also produced a large separated wake flow and subsequently an increased profile drag. The reduction in lift-induced drag, however, outperformed the increase in profile drag and resulted in a virtually unchanged total drag in comparison with the baseline wing. Physical mechanisms responsible for the RHDW-induced appealing aerodynamics and vortex flow modifications were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AR:

Aspect ratio = b 2/S total

b :

Wing span = 2s

b′ :

Effective span

c :

Chord

c RHDW :

RHDW root chord

C D :

Total drag coefficient = \( C_{{D_{i} }} + C_{{D_{p} }} \)

\( C_{{D_{i} }} \) :

Lift-induced drag coefficient = D i /½ρ u 2 S total

\( C_{{D_{p} }} \) :

Profile drag coefficient

C L :

Total lift coefficient

D i :

Lift-induced drag

e :

Span efficiency factor

r :

Radial distance

r c :

Vortex core radius

Re :

Chord Reynolds number = u c

s :

Semi-span

s RHDW :

RHDW semi-span

S BW :

Baseline-wing area

S RHDW :

RHDW surface area

S total :

Total wing area = S BW + S RHDW

u c :

Axial core velocity

u :

Freestream velocity

u, v, w :

Mean axial, vertical and spanwise velocity

v θ :

Tangential velocity

x, y, z :

Streamwise, vertical and spanwise direction

α:

Angle of attack

αss :

Static-stall angle

Λ:

Sweep angle

ζ:

Streamwise vorticity

Γ:

Vortex circulation

Γ c :

Core circulation

Γ o :

Total circulation

ρ :

Freestream fluid density

ψ:

Stream function

ϕ:

Velocity potential

υ:

Fluid kinematic viscosity

References

  • Altaf A, Omar AA, Asrar W, Jamaluddin HBL (2011) Study of the reverse delta wing. J Aircraft 48(1):277–286

    Article  Google Scholar 

  • Aviation Week and Space Technology (2003) June, pp 15

  • Barlow JB, Rae WH, Pope A (1999) Low-speed wind tunnel testing. Wiley, New York, pp 367–390

    Google Scholar 

  • Betz A (1925) A method for the direct determination of profile drag. ZFM 16:42–44

    Google Scholar 

  • Birch D, Lee T (2004) The structure and induced drag of a tip vortex. J Aircraft 41(5):1138–1145

    Article  Google Scholar 

  • Breitsamter C (2008) Unsteady flow phenomena associated with leading-edge vortices. Prog Aerospace Sci 44:48–65

    Article  Google Scholar 

  • Brune GW (1994) Quantitative low-speed wake surveys. J Aircraft 31(2):249–255

    Article  Google Scholar 

  • Chow JS, Zilliac GG, Bradshaw P (1997) Mean and turbulence measurements in the near field of a wingtip vortex. AIAA J 35(10):1561–1567

    Article  Google Scholar 

  • Corsiglia VR, Schwind RG, Chigier NA (1973) Rapid scanning, three-dimensional hot-wire anemometer surveys of wing-tip vortices. J Aircraft 10:752–757

    Article  Google Scholar 

  • Elsayed OA, Asrar W, Omar AA (2008) Reverse delta wing trailing vortex characteristics by particle image velocimetry (PIV). In: 3rd international symposium on advanced fluid/solid science and technology in experimental mechanics, Tainan, 7–10 Dec

  • Francis MS, Kennedy DA (1979) Formation of a trailing vortex. J Aircraft 15:148–154

    Article  Google Scholar 

  • Gerontakos P, Lee T (2007) Lift-induced drag of a cambered wing for Re < 1 × 106. Exp Fluids 42(3):363–369

    Article  Google Scholar 

  • Green SI, Acosta AJ (1991) Unsteady flow in trailing vortices. J Fluid Mech 227:107–134

    Article  Google Scholar 

  • Gursul I, Gordnier R, Visbal M (2005) Unsteady aerodynamics of non-slender delta wings. Prog Aerospace Sci 41(7):515–557

    Article  Google Scholar 

  • Hoffmann ER, Joubert PN (1963) Turbulent line vortices. J Fluid Mech 16:395–411

    Article  Google Scholar 

  • Kusunose K (1997) Development of a universal wake survey data analysis code. AIAA-97-2294

  • Kusunose K (1998) Drag reduction based on a wake-integral method. AIAA-98-2723

  • Lam H (1945) Hydrodynamics, 6th edn. Dover, New York, p 592

    Google Scholar 

  • Lee S (1994) Reduction of blade-vortex interaction noise through porous leading edge. AIAA J 32(3):480–488

    Article  Google Scholar 

  • Lee L, Lee T (2006) Oscillating-wing tip vortex with short-span trailing-edge strip. J Aircraft 43(3):723–731

    Article  Google Scholar 

  • Lee T, Pereira J (2010) On the nature of wake- and jet-like axial tip-vortex flow. J Aircraft 47(6):1946–1954

    Article  Google Scholar 

  • Liu Z, Russell W, Sankar LN, Hassan AA (2001) A study of rotor tip vortex structure alternation techniques. J Aircraft 38(3):473–477

    Article  Google Scholar 

  • Maskell E (1973) Progress towards a method for the measurement of the components of the drag of a wing of finite span. RAE technical report 72232

  • McAlister KW, Takahashi RK (1991) NACA 0015 wing pressure and trailing vortex measurements. NASA TP-3151

  • Muller RHG (1990) Winglets on rotor blades in forward flight—A theoretical and experimental investigation. Vertica 14(1):31–46

    Google Scholar 

  • Naik DA, Ostowari C (1990) Effects of nonplanar outboard of wing forms on a wing. J Aircraft 27(2):117–122

    Article  Google Scholar 

  • Nelson RC, Pelletier A (2003) The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers. Prog Aerospace Sci 39:185–248

    Article  Google Scholar 

  • Norris G (1998) Novel SST configuration revealed. Flight Int, 23 Dec 1998-5 Jan 1999

  • Phillips WRC (1981) The turbulent trailing vortex during roll-up. J Fluid Mech 105:451–467

    Article  MATH  Google Scholar 

  • Ramaprian B, Zheng Y (1997) Measurements in rollup region of the tip vortex from a rectangular wing. AIAA J 35(12):1837–1843

    Article  Google Scholar 

  • Robinson JJ (1996) A simulation-based study of the impact of aircraft wake turbulence weight categories on airport capacity. AGARD CP-584:1–15

    Google Scholar 

  • Rossow V (1999) Lift-generated vortex wake of subsonic transport aircraft. Prog Aero Sci 35:507–660

    Article  Google Scholar 

  • Shekarriz A, Fu TC, Katz J, Huang T (1993) Near-field behavior of a tip vortex. AIAA J 31:112–118

    Article  Google Scholar 

  • Spalart PR (1998) Airplane trailing vortices. Ann Rev Fluid Mech 30:107–138

    Article  MathSciNet  Google Scholar 

  • Spedding GR, McArthur J (2010) Span efficiencies of wings at low Reynolds numbers. J Aircraft 47(1):120–128

    Article  Google Scholar 

  • Spillman JJ (1978) The use of wing tip sails to reduce vortex drag. Aeronautical J 82:387–395

    Google Scholar 

  • Tangler JL (1978) Experimental investigation of the subwing tip and its vortex structure. NASA CR-3058

Download references

Acknowledgments

This work was supported by the Natural Science and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, T., Su, Y.Y. Wingtip vortex control via the use of a reverse half-delta wing. Exp Fluids 52, 1593–1609 (2012). https://doi.org/10.1007/s00348-012-1274-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-012-1274-8

Keywords

Navigation