Skip to main content
Log in

Flow temporal reconstruction from non-time-resolved data part I: mathematic fundamentals

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

At least two circumstances point to the need of postprocessing techniques to recover lost time information from non-time-resolved data: the increasing interest in identifying and tracking coherent structures in flows of industrial interest and the high data throughput of global measuring techniques, such as PIV, for the validation of computational fluid dynamics (CFD) codes. This paper offers the mathematic fundamentals of a space--time reconstruction technique from non-time-resolved, statistically independent data. An algorithm has been developed to identify and track traveling coherent structures in periodic flows. Phase-averaged flow fields are reconstructed with a correlation-based method, which uses information from the Proper Orthogonal Decomposition (POD). The theoretical background shows that the snapshot POD coefficients can be used to recover flow phase information. Once this information is recovered, the real snapshots are used to reconstruct the flow history and characteristics, avoiding neither the use of POD modes nor any associated artifact. The proposed time reconstruction algorithm is in agreement with the experimental evidence given by the practical implementation proposed in the second part of this work (Legrand et al. in Exp Fluids, 2011), using the coefficients corresponding to the first three POD modes. It also agrees with the results on similar issues by other authors (Ben Chiekh et al. in 9 Congrès Francophone de Vélocimétrie Laser, Bruxelles, Belgium, 2004; Van Oudheusden et al. in Exp Fluids 39-1:86–98, 2005; Meyer et al. in 7th International Symposium on Particle Image Velocimetry, Rome, Italy, 2007a; in J Fluid Mech 583:199–227, 2007b; Perrin et al. in Exp Fluids 43-2:341–355, 2007). Computer time to perform the reconstruction is relatively short, of the order of minutes with current PC technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Baker CTH (1977) The numerical treatment of integral equations. Clarendon Press, Oxford, pp 358–360

    MATH  Google Scholar 

  • Ben Chiekh M, Michard M, Grosjean N, Bera JC (2004) Reconstruction temporelle d’un champ aérodynamique instationnaire à partir de measures PIV non résolues dans le temps. In: 9 Congrès Francophone de Vélocimétrie Laser. Bruxelles, Belgium

  • Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25:539–575

    Google Scholar 

  • Bogey C, Barré S, Juvé D, Bailly C (2009) Simulation of a hot coaxial jet: Direct noise prediction and flow-acoustics correlations. Phys Fluids 21(3):035105

    Google Scholar 

  • Bonnet JP, Cole DR, Delville J, Glauser MN, UkeileyLS (1994) Stochastic estimation and proper orthogonal decomposition: complementary techniques for identifying structure. Exp Fluids 17:307–314

  • Druault P, Guibert P, Alizon F (2005) Use of proper orthogonal decomposition for time interpolation from PIV data—application to the cycle-to-cycle variation of in-cylinder engine flows. Exp Fluids 39-6:1009–1023

    Google Scholar 

  • Epps BP, Techet AH (2009) An error threshold criterion for singular value decomposition modes extracted from PIV data. Exp Fluids 48:355–367

    Google Scholar 

  • Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94. doi:10.1017/S0022112095000462

    Google Scholar 

  • Legrand M, Nogueira J, Lecuona A, Nauri S, Rodriguez PA (2010) Atmospheric low Swirl Burner flow characterization with Stereo-PIV. Exp Fluids 48-5:901–913

    Google Scholar 

  • Legrand M, Nogueira J, Tachibana S, Lecuona A, Nauri S (2011) Flow temporal reconstruction from non time-resolved data. Part II: practical implementation, methodology validation and applications. Exp Fluids (submitted)

  • Meyer KE, Cavar D, Pedersen JM (2007a) POD as tool for comparison of PIV and LES data. In: 7th International symposium on particle image velocimetry, Rome, Italy

  • Meyer KE, Pedersen JM, Ozcan O (2007b) A turbulent jet in crossflow analyzed with proper orthogonal decomposition. J Fluid Mech 583:199–227

    Google Scholar 

  • Murray NE, Ukeiley LS (2007) Modified quadratic stochastic estimation of resonating subsonic cavity flow. J Turbul 8-53:1–23

    Google Scholar 

  • Perrin R, Braza M, Cid E, Cazin S, Barthet A, Sevrain A, Mockett C, Thiele F (2007) Obtaining phase averaged turbulence properties in the near wake of a circular cylinder at high Reynolds number using POD. Exp Fluids 43-2:341–355

    Google Scholar 

  • Schmid P, Sesterhenn J (2008) Dynamic mode decomposition of numerical and experimental data. J Fluid Mech 656:5–28

    Google Scholar 

  • Sirovich L (1987) Turbulence and the dynamics of coherent structures, Parts I, II and III. Q Appl Math XLV(3):561–582

  • Tachibana S, Yamashita J, Zimmer L, Suzuki K, Hayashi AK (2009) Dynamic behavior of a freely-propagating turbulent premixed flame under global stretch-rate oscillations. In: Proceedings of the combustion institute, vol 32-2, pp 1795–1802

  • Timmerman BH, Skeen AJ, Bryanston-Cross PJ, Graves MJ (2009) Large-scale time-resolved digital particle image Velocimetry (TR-DPIV) for measurement of high subsonic hot coaxial jet exhaust of a gas turbine engine. Meas Sci Technol 20-7(074002)

    Google Scholar 

  • Tinney CE, Coiffet F, Delville J, Hall AM, Jordan P, Glauser MN (2006) On spectral linear stochastic estimation. Exp Fluids 41-5:763–775

    Google Scholar 

  • Van Oudheusden BW, Scarano F, Van Hinsberg NP, Watt DW (2005) Phase-resolved characterization of vortex shedding in the near wake of a square section cylinder at incidence. Exp Fluids 39-1:86–98

    Google Scholar 

  • Wernet MP (2007) Temporally resolved PIV for space-time correlations in both cold and hot jet flows. Meas Sci Technol 18-5:1387–1403

    Google Scholar 

Download references

Acknowledgments

This work has been partially funded by the CoJeN European project, Specific Targeted RESEARCH Project EU Contract No. AST3-CT-2003-502790; the Spanish Research Agency grant DPI2002-02453 “Técnicas avanzadas de Velocimetría por Imagen de Partículas (PIV) Aplicadas a Flujos de Interés Industrial” and the Spanish Research Agency grant ENE2006-13617 “TERMOPIV: Combustión y transferencia de calor analizadas con PIV avanzado”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Legrand.

Appendix

Appendix

As already commented in Sect. 2, if the snapshot number N is large enough (e.g., N ~ 102), the summation in Eq. 1 may be approximated as a continuous integration over time. This way, the eigen-value problem leads to: \( \int_{0}^{1} {C\left( {\hat{i},\hat{j}} \right)\chi^{(k)} } \left( {\hat{j}} \right){\text{d }}\hat{j} = \lambda^{(k)} \chi^{(k)} \left( {\hat{i}} \right) \). Using Eqs. 7 and 8, we have to solve the following equation:

$$ \lambda^{\prime}\chi \left( {\hat{i}} \right) - \int\limits_{0}^{1} {\user2{K}\left( {\hat{i},\hat{j}} \right)\chi \left( {\hat{j}} \right)d \, \hat{j}} = 0; \quad {\rm with}\,\lambda^{\prime} = \lambda - E $$
(14)

where \( \user2{K}({\hat{i},\hat{j}}) \) is the integral kernel of Eq. 8 and \( \lambda^{\prime } \) its corresponding eigen values.

In this particular case, \( \user2{K}({\hat{i},\hat{j}}) \) is degenerate and separable, meaning that it can be written as a product of functions of \({\hat{i}}\) by functions of \({\hat{j}}\) (Baker 1977):

$$ \int\limits_{0}^{1} {\user2{K}\left( {\hat{i},\hat{j}} \right)\chi \left( {\hat{j}} \right){\text{d}}\hat{j}} = \sum\limits_{n} {R_{n} \left( {\hat{i}} \right)\int\limits_{0}^{1} {S_{n} \left( {\hat{j}} \right)\chi \left( {\hat{j}} \right){\text{d}}\hat{j}} }. $$
(15)

This simplifies the resolution of Eq. 14, leading to solve another eigen-value problem: \( MV = \lambda^{\prime } V \), where \( M_{i,j} = \int_{0}^{1} {S_{i} (x)R_{j} (x){\text{d}}x} \), \( V_{j} = \int_{0}^{1} {S_{j} (t)\chi (t){\text{d}}t} \), where \( \lambda^{\prime } \) are the same eigen values as those of Eq. 15. Choosing \( R_{n} (x) \) and \( S_{n} (t) \) as in Eq. 16, and truncating the Fourier expansion at mode Nt, leads to:

$$ \begin{array}{*{20}c} {R_{1} (x) = 1;} &\quad {S_{1} (t) = C_{0} + \sum\limits_{n = 1}^{Nt} {A_{n} \cos (2n\pi t) + B_{n} \sin (2n\pi t) \, } } & {} \\ {R_{1 + p} (x) = \cos (2p\pi x) ;} &\quad {S_{1 + p} (t) = A_{p} + \sum\limits_{q = 1}^{Nt} {\alpha_{p,q} \cos (2q\pi t) + \tau_{p,q} \sin (2q\pi t) \, } } &\quad {{\text{for }}1 \le p \le Nt} \\ {R_{Nt + 1 + p} (x) = \sin (2p\pi x);} &\quad {S_{Nt + 1 + n} (t) = B_{p} + \sum\limits_{q = 1}^{Nt} {\tau_{q,p} \cos (2q\pi t) + \beta_{p,q} \sin (2q\pi t)} } & {{\text{for }}1 \le p \le Nt} \\ \end{array} $$
(16)

Thus, matrix M can now be written as follows:

$$ M = \left( {\begin{array}{*{20}c} {2C_{0} } & {A_{1} } & \cdots & {A_{i} } & \cdots & {A_{Nt} } & {B_{1} } & \cdots & {B_{i} } & \cdots & {B_{Nt} } \\ {2A_{1} } & {\alpha_{1,1} } & \cdots & {\alpha_{1,i} } & \cdots & {\alpha_{1,Nt} } & {\tau_{1,1} } & \cdots & {\tau_{1,i} } & \cdots & {\tau_{1,Nt} } \\ \vdots & \vdots & \ddots & {} & {} & \vdots & \vdots & \ddots & {} & {} & \vdots \\ {2A_{i} } & {\alpha_{i,1} } & {} & {\alpha_{i,i} } & {} & {\alpha_{i,Nt} } & {\tau_{i,1} } & {} & {\tau_{i,i} } & {} & {\tau_{i,Nt} } \\ \vdots & \vdots & {} & {} & \ddots & \vdots & \vdots & {} & {} & \ddots & \vdots \\ {2A_{Nt} } & {\alpha_{Nt,1} } & \cdots & {\alpha_{Nt,i} } & \cdots & {\alpha_{Nt,Nt} } & {\tau_{Nt,1} } & \cdots & {\tau_{Nt,i} } & \cdots & {\tau_{Nt,Nt} } \\ {2B_{1} } & {\tau_{1,1} } & \cdots & {\tau_{i,1} } & \cdots & {\tau_{Nt,1} } & {\beta_{1,1} } & \cdots & {\beta_{1,j} } & \cdots & {\beta_{1,Nt} } \\ \vdots & \vdots & \ddots & {} & {} & \vdots & \vdots & \ddots & {} & {} & \vdots \\ {2B_{i} } & {\tau_{1,i} } & {} & {\tau_{i,i} } & {} & {\tau_{Nt,i} } & {\beta_{i,1} } & {} & {\beta_{i,i} } & {} & {\beta_{i,Nt} } \\ \vdots & \vdots & {} & {} & \ddots & \vdots & \vdots & {} & {} & \ddots & \vdots \\ {2B_{Nt} } & {\tau_{1,Nt} } & \cdots & {\tau_{i,Nt} } & \cdots & {\tau_{Nt,Nt} } & {\beta_{Nt,1} } & \cdots & {\beta_{Nt,i} } & \cdots & {\beta_{Nt,Nt} } \\ \end{array} } \right) $$
(17)

In order to further simplify this \( \left[ {\left( {2Nt + 1} \right) \times \left( {2Nt + 1} \right)} \right] \) matrix, several physical assumptions can be made. The flow presents a high spatial–temporal coherence (weak dissipation, implying Taylor hypothesis), so that the flow is convective: Structures are convected by main flow at a local convective velocity which corresponds to the mean flow \( \bar{U}(\vec{r}) \). Taking into account that the flow is also pseudo periodic and propagates information downstream, the equation that describes \( \tilde{U}(\vec{r},t) \) is a wave equation:

$$ \tilde{U}(\vec{r},t) = \tilde{U}\left( {\omega t - \vec{k}_{w} \left( {\vec{r}} \right) \cdot \vec{r}} \right) = \sum\limits_{n = 1}^{\infty } {W_{n} \cos \left( {n\left[ {\omega t - \vec{k}_{w} \left( {\vec{r}} \right) \cdot \vec{r}} \right] + \gamma_{n} } \right)}.$$
(18)

Here, \( \omega = 2\pi f \) \( \left( {\omega t_{i} = 2\pi \hat{i}} \right) \) is the angular frequency of the propagating wave, and \( \vec{k}_{w} \) is the wave vector. Wave number \( k_{w} \) is related to angular frequency and phase velocity \( \bar{U}(\vec{r}) \) through the relation \( k_{w} = {\omega \mathord{\left/ {\vphantom {\omega {\bar{U}}}} \right. \kern-\nulldelimiterspace} {\bar{U}}} \). The formulation in Eq. 18 can be rewritten expanding the cosine function, resulting in:

$$ \tilde{U}(\vec{r},t) = \sum\limits_{n = 1}^{\infty } {\underbrace {{\left( {W_{n} \cos \left( {n\vec{k}_{w} \left( {\vec{r}} \right) \cdot \vec{r} + \gamma_{n} } \right)} \right)}}_{{a_{n} \left( {\vec{r}} \right)}}\cos \left( {n\omega t} \right)} + \sum\limits_{n = 1}^{\infty } {\underbrace {{\left( {W_{n} \sin \left( {n\vec{k}_{w} \left( {\vec{r}} \right) \cdot \vec{r} + \gamma_{n} } \right)} \right)}}_{{b_{n} \left( {\vec{r}} \right)}}\sin \left( {n\omega t} \right)}.$$
(19)

Now, the matrix constants \( \alpha_{p,q} \), \( \beta_{p,q} \) and \( \tau_{p,q} \) may be calculated as follow:

$$ \begin{gathered} \alpha_{p,q} = \iint\limits_{\Upomega } {a_{p} (\vec{r})a_{q} (\vec{r}){\text{d}}\Upomega } = W_{p} W_{q} \iint\limits_{\Upomega } {\cos \left( {p\vec{k}_{w} \vec{r} + \gamma_{p} } \right)\cos \left( {q\vec{k}_{w} \vec{r} + \gamma_{q} } \right){\text{d}}\Upomega } \hfill \\ \beta_{p,q} = \iint\limits_{\Upomega } {b_{p} (\vec{r})b_{q} (\vec{r}){\text{d}}\Upomega } = W_{p} W_{q} \iint\limits_{\Upomega } {\sin \left( {p\vec{k}_{w} \vec{r} + \gamma_{p} } \right)\sin \left( {q\vec{k}_{w} \vec{r} + \gamma_{q} } \right){\text{d}}\Upomega } \hfill \\ \tau_{p,q} = \iint\limits_{\Upomega } {a_{p} (\vec{r})b_{q} (\vec{r}){\text{d}}\Upomega } = W_{p} W_{q} \iint\limits_{\Upomega } {\cos \left( {p\vec{k}_{w} \vec{r} + \gamma_{p} } \right)\sin \left( {q\vec{k}_{w} \vec{r} + \gamma_{q} } \right)d\Upomega } \hfill \\ \end{gathered} $$
(20)

As \( \vec{k}_{w} \left( {\vec{r}} \right)\vec{r} \) may vary along the integration domain, the integrations in Eq. 20 are not straightforward. Nevertheless, choosing integration paths along streamlines and considering \( \Upomega \) are much larger than typical structure size, the inhomogeneities resulting from changes in \( \vec{k}_{w} \) may vanish.

$$ \begin{gathered} \left. \begin{gathered} \alpha_{p,q} = \frac{1}{2}\delta_{p,q} W_{p} W_{q} \hfill \\ \beta_{p,q} = \frac{1}{2}\delta_{p,q} W_{p} W_{q} \hfill \\ \end{gathered} \right\}\alpha_{p,q} = \beta_{p,q} = \left\{ {\begin{array}{*{20}c} {0 \, if \, p \ne q} \\ {W_{p}^{2} \, if \, p = q} \\ \end{array} } \right. \hfill \\ \tau_{p,q} = 0{\text{ for any}}\left\{ {p,q} \right\} \hfill \\ \end{gathered} $$
(21)

It could be argued that coherence could be lost by dissipation for long distances l larger than typical weak dissipative structure size \( {{2\pi } \mathord{\left/ {\vphantom {{2\pi } {k_{w} }}} \right. \kern-\nulldelimiterspace} {k_{w} }} \). In order to take into account this last argument, a dissipative function \( \xi (\vec{r}) \) could be introduced by multiplying the above results for Eqs. 19 or 20. But the decay rate of \( \xi (\vec{r}) \) would be \( l \gg {{2\pi } \mathord{\left/ {\vphantom {{2\pi } {k_{w} }}} \right. \kern-\nulldelimiterspace} {k_{w} }} \), so the integrals of Eq. 20 can be roughly simplified as Eq. 21.

Finally, the matrix M is strongly simplified:

$$ M = \left( {\begin{array}{*{20}c} {2C_{0} } & {A_{1} } & \cdots & {A_{i} } & \cdots & {A_{Nt} } & {B_{1} } & \cdots & {B_{i} } & \cdots & {B_{Nt} } \\ {2A_{1} } & {\alpha_{1,1} } & \cdots & 0 & \cdots & 0 & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & {} & {} & \vdots & \vdots & \ddots & {} & {} & \vdots \\ {2A_{i} } & 0 & {} & {\alpha_{i,i} } & {} & 0 & 0 & {} & 0 & {} & 0 \\ \vdots & \vdots & {} & {} & \ddots & \vdots & \vdots & {} & {} & \ddots & \vdots \\ {2A_{Nt} } & 0 & \cdots & 0 & \cdots & {\alpha_{Nt,Nt} } & 0 & \cdots & 0 & \cdots & 0 \\ {2B_{1} } & 0 & \cdots & 0 & \cdots & 0 & {\alpha_{1,1} } & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & {} & {} & \vdots & \vdots & \ddots & {} & {} & \vdots \\ {2B_{i} } & 0 & {} & 0 & {} & 0 & 0 & {} & {\alpha_{i,i} } & {} & 0 \\ \vdots & \vdots & {} & {} & \ddots & \vdots & \vdots & {} & {} & \ddots & \vdots \\ {2B_{Nt} } & 0 & \cdots & 0 & \cdots & 0 & 0 & \cdots & 0 & \cdots & {\alpha_{Nt,Nt} } \\ \end{array} } \right) $$
(22)

Now, if the flow is strongly dominated by the fundamental frequency f, \( \tilde{U}_{i} \) is roughly equal to the first term of its Fourier expansion (i.e., \( \| {a_{1} ( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {r} } )} \| \) is typically much larger than contributions of harmonic frequencies \( \| {a_{n > 1} ( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {r} } )} \| \)). In other words, \( Nt = 1 \) still approximates well the flow field. Under these conditions,

$$ M \approx \left( {\begin{array}{*{20}c} {2C_{0} } & {A_{1} } & {B_{1} } \\ {2A_{1} } & {\alpha_{1,1} } & 0 \\ {2B_{1} } & 0 & {\alpha_{1,1} } \\ \end{array} } \right) $$
(23)

The sorted \( \lambda^{\prime } \) eigen values of M are then:

$$ \begin{array}{*{20}c} {\lambda^{(0)} = C_{0} + \frac{1}{2}\alpha_{1,1} + \sqrt \Updelta + \frac{E}{N}} \hfill & \to \hfill & {\chi_{i}^{(0)*} = \frac{{\lambda^{(0)} }}{{B_{1} }}\left( {Q^{ + } + \sqrt {A_{1}^{2} + B_{1}^{2} } \cos \left( {2\pi \,\hat{i} - \phi_{0} } \right)} \right)} \hfill \\ {\lambda^{(1)} = C_{0} + \frac{1}{2}\alpha_{1,1} - \sqrt \Updelta + \frac{E}{N}} \hfill & \to \hfill & {\chi_{i}^{(1)*} = \frac{{\lambda^{(1)} }}{{B_{1} }}\left( {\sqrt {A_{1}^{2} + B_{1}^{2} } \cos \left( {2\pi \,\hat{i} - \phi_{0} } \right) + Q^{ - } } \right)} \hfill \\ {\lambda^{\prime (2)} = \alpha_{1,1} + \frac{E}{N}} \hfill & \to \hfill & {\chi_{i}^{(2)*} = \frac{{\lambda^{(2)} }}{{B_{1} }}\sqrt {A_{1}^{2} + B_{1}^{2} } \sin \left( {2\pi \,\hat{i} - \phi_{0} } \right)} \hfill \\ \end{array} $$
(24)

Note that the eigen functions \( \chi_{i}^{(k)*} \) are non-normalized for simplicity. The normalized eigen values should be obtained as: \( \chi_{i}^{(k)} = \frac{{\chi_{i}^{(k)*} }}{{\int_{{\hat{i} = 0}}^{1} {\left( {\chi_{i}^{(k)*} } \right)^{2} {\text{d}}\hat{i}} }} \). The constants appearing in Eq. 24 are:

$$ \begin{gathered} \Updelta = \left( {\frac{1}{2}\alpha_{1,1} - C_{0} } \right)^{2} + 2\left( {A_{1}^{2} + B_{1}^{2} } \right)\quad {\text{and}}\quad \phi_{0} = \arctan \left( {\frac{{B_{1} }}{{A_{1} }}} \right) \hfill \\ Q^{ + } = \frac{{A_{1}^{2} + B_{1}^{2} }}{{{{\alpha_{1,1} } \mathord{\left/ {\vphantom {{\alpha_{1,1} } 2}} \right. \kern-\nulldelimiterspace} 2} - C_{0} + \sqrt \Updelta }}\quad {\text{and}}\quad Q^{ - } = \frac{{A_{1}^{2} + B_{1}^{2} }}{{{{\alpha_{1,1} } \mathord{\left/ {\vphantom {{\alpha_{1,1} } 2}} \right. \kern-\nulldelimiterspace} 2} - C_{0} - \sqrt \Updelta }} \hfill \\ \end{gathered} $$
(25)

Taking into account that \( C_{0} > A_{1} \), \( C_{0} > \alpha_{1,1} \), and developing \( \sqrt \Updelta \) in the Taylor series, we get:

$$ Q^{ + } = \frac{{A_{1}^{2} + B_{1}^{2} }}{{{{\alpha_{1,1} } \mathord{\left/ {\vphantom {{\alpha_{1,1} } 2}} \right. \kern-\nulldelimiterspace} 2} - C_{0} + \sqrt \Updelta }} \to C_{0} - \frac{{\alpha_{1,1} }}{2}\quad {\text{and}}\quad Q^{ - } = \frac{{A_{1}^{2} + B_{1}^{2} }}{{{{\alpha_{1,1} } \mathord{\left/ {\vphantom {{\alpha_{1,1} } 2}} \right. \kern-\nulldelimiterspace} 2} - C_{0} - \sqrt \Updelta }} \to 0 $$
(26)

As a consequence, cosine contribution in \( \chi_{i}^{(0)} \) is relatively small compared with the constant \( Q^{ + } \). On the contrary, the constant contribution \( Q^{ - } \) in \( \chi_{i}^{(1)} \) is small, and \( \chi_{i}^{(1)} \) corresponds almost to a pure cosine function of phase lag \( \phi_{0} \).

Now, focusing on A n and B n terms:

$$ \begin{gathered} A_{n} = \iint\limits_{\Upomega } {\bar{U}(\vec{r})a_{n} (\vec{r})}{\text{d}}\Upomega = \iint\limits_{\Upomega } {\bar{U}(\vec{r})}\cos \left( {n\vec{k}_{w} \cdot \vec{r} + \gamma_{n} } \right){\text{d}}\Upomega \hfill \\ B_{n} = \iint\limits_{\Upomega } {\bar{U}(\vec{r})b_{n} (\vec{r})}{\text{d}}\Upomega = \iint\limits_{\Upomega } {\bar{U}(\vec{r})}\sin \left( {n\vec{k}_{w} \cdot \vec{r} + \gamma_{n} } \right){\text{d}}\Upomega \hfill \\ \end{gathered} $$
(27)

If the main wavelength of \( \bar{U}(\vec{r}) \) is much larger than k w , i.e., \( \bar{U}(\vec{r}) \) does not vary much along the propagation direction: \( A_{n} \approx B_{n} \approx 0 \) and then:

$$ M \approx \left( {\begin{array}{*{20}c} {2C_{0} } & 0 & 0 \\ 0 & {\alpha_{1,1} } & 0 \\ 0 & 0 & {\alpha_{1,1} } \\ \end{array} } \right) $$
(28)

This simply leads to the new eigen values and the normalized \( \chi_{i} \) functions for this case:

$$ \begin{array}{*{20}c} {\lambda^{\prime (0)} = 2C_{0} } \hfill & \to \hfill & {\chi_{i}^{(0)} \approx \sqrt \frac{1}{N} } \hfill \\ {\lambda^{\prime (1)} = \alpha_{1,1} } \hfill & \to \hfill & {\chi_{i}^{(1)} = \pm \sqrt \frac{2}{N} \cos \left( {2\pi \,\hat{i} - \frac{\pi }{4}} \right)} \hfill \\ {\lambda^{\prime (2)} = \alpha_{1,1} } \hfill & \to \hfill & {\chi_{i}^{(2)} = \pm \sqrt \frac{2}{N} \sin \left( {2\pi \,\hat{i} - \frac{\pi }{4}} \right)} \hfill \\ \end{array} $$
(29)

The formulations of Eq. 29 correspond with the limit case of Eq. 24. Note that Eq. 29 is the same expression as described by Legrand et al. (2010).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Legrand, M., Nogueira, J. & Lecuona, A. Flow temporal reconstruction from non-time-resolved data part I: mathematic fundamentals. Exp Fluids 51, 1047–1055 (2011). https://doi.org/10.1007/s00348-011-1111-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-011-1111-5

Keywords

Navigation