Skip to main content
Log in

Secondary flow patterns and mixing in laminar pulsating flow through a curved pipe

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Mixing by secondary flow is studied by particle image velocimetry (PIV) in a developing laminar pulsating flow through a circular curved pipe. The pipe curvature ratio is η = r 0/r c  = 0.09, and the curvature angle is 90°. Different secondary flow patterns are formed during an oscillation period due to competition among the centrifugal, inertial, and viscous forces. These different secondary-flow structures lead to different transverse-mixing schemes in the flow. Here, transverse mixing enhancement is investigated by imposing different pulsating conditions (Dean number, velocity ratio, and frequency parameter); favorable pulsating conditions for mixing are introduced. To obviate light-refraction effects during PIV measurements, a T-shaped structure is installed downstream of the curved pipe. Experiments are carried out for the Reynolds numbers range 420 ≤ Rest ≤ 1,000 (Dean numbers 126.6 ≤ Dn ≤ 301.5) corresponding to non-oscillating flow, velocity component ratios 1 ≤ (β = U max,osc/U m,st) ≤ 4 (the ratio of velocity amplitude of oscillations to the mean velocity without oscillations), and frequency parameters 8.37 < (α = r 0(ω/ν)0.5) < 24.5, where α2 is the ratio of viscous diffusion time over the pipe radius to the characteristic oscillation time. The variations in cross-sectional average values of absolute axial vorticity (|ζ|) and transverse strain rate (|ε|) are analyzed in order to quantify mixing. The effects of each parameter (Rest, β, and α) on transverse mixing are discussed by comparing the dimensionless vorticities (|ζ P |/|ζ S |) and dimensionless transverse strain rates (|ε P |/|ε S |) during a complete oscillation period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

Amixed :

Area of fully mixed core

D:

Coefficient of diffusion

K:

Concentration of fluid

r o :

Pipe cross-sectional radius

r c :

Curvature radius

u :

Velocity in x direction

\( v \) :

Velocity in y direction

Dn:

Dean number, \( {\text{Dn}} = {\frac{{U_{m} (2r_{0} )}}{\upsilon }}\sqrt {{\frac{{r_{0} }}{{r_{c} }}}} \)

\( M_{a} \) :

Augmentation in fuel consumption rate

SD:

Standard deviation

Re:

Reynolds number, \( \text{Re} = {\frac{{U_{m} (2r_{0} )}}{\upsilon }} \)

RSD:

Relative standard deviation

α:

Womersley number, \( r_{o} \left( {\omega /\upsilon } \right)^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}} \)

β:

Velocity component ratio

\( \upsilon \) :

Kinematic viscosity

η:

Curvature ratio of curved pipe, \( {{r_{o} } \mathord{\left/ {\vphantom {{r_{o} } {r_{c} }}} \right. \kern-\nulldelimiterspace} {r_{c} }} \)

ω:

Angular frequency

\( \zeta (x,y) \) :

Axial vorticity at position (x, y) in the curved pipe cross section:\( \;{\frac{\partial v}{\partial x}} - {\frac{\partial u}{\partial y}} \)

\( \left| {\zeta_{P} } \right| \) :

Cross-sectional average value of absolute vorticity in a pulsatile flow

\( \left| {\zeta_{S} } \right| \) :

Cross-sectional average value of absolute vorticity in a steady flow

\( \varepsilon (x,y) \) :

Transverse strain rate at position (x, y) in the curved pipe cross section: \( \frac{1}{2}\left( {\;{\frac{\partial v}{\partial x}} + {\frac{\partial u}{\partial y}}} \right) \)

\( \left| {\varepsilon_{P} } \right| \) :

Cross-sectional average value of absolute transverse strain rate in a pulsatile flow

\( \left| {\varepsilon_{S} } \right| \) :

Cross-sectional average value of absolute transverse strain rate in a steady flow

Γ:

Circulation

m:

Mean value

B:

Blue fluid

P:

Pulsating flow

R:

Red fluid

S:

Steady flow

References

  • Ajakh A, Kestoras MD, Toé R, Peerhossaini H (1999) Influence of forced perturbations in stagnation region on Görtler instability. Int J Heat Fluid Flow 37:1572–1577

    Google Scholar 

  • Ansari MA, Kim KY (2009) Parametric study on mixing of two fluids in a three-dimensional serpentine microchannel. J Chem Eng 146:439–448

    Article  Google Scholar 

  • Bertelsen AF (1975) An experimental investigation of low Reynolds number secondary streaming effects asso ciated with an oscillating viscous flow in a curved pipe. J Fluid Mech 70(3):519–527

    Article  Google Scholar 

  • Chang LJ, Tarbell JM (1985) Numerical simulation of fully developed sinusoidal and pulsatile (physiological) flow in curved tubes. J Fluid Mech 161:175–198

    Article  MathSciNet  MATH  Google Scholar 

  • Dean WR (1927) Note on the motion of fluid in a curved pipe. Phil Mag S7(4):208–223

    Google Scholar 

  • Dean WR (1928) The streamline motion of fluid in a curved pipe. Phil Mag S7(5):673–695

    Google Scholar 

  • Deplano V, Siouffi M (1999) Experimental and numerical study of pulsatile flows through stenosis: wall shear stress analysis. J Appl Biomech 32:1081–1090

    Article  Google Scholar 

  • Erdogan ME, Chatwin PC (1967) The effects of curvature and buoyancy on the laminar dispersion of solute in horizontal tube. J Fluid Mech 29:465–484

    Article  Google Scholar 

  • Habchi C, Lemenand T, Della Valle D, Peerhossaini H (2010) Assessment of micromixing in turbulent vortical flows. Chem Eng J (submitted)

  • Hamakiotes CC, Berger SA (1990) Periodic flows through curved tubes: the effect of the frequency parameter. J Fluid Mech 210:353–370

    Article  Google Scholar 

  • Koutsky JA, Adler RJ (1964) Minimization of axial dispersion by use of secondary flow in helical tubes. Can J Chem Eng 42:239–246

    Article  Google Scholar 

  • Lin JY, Tarbell JM (1980) An experimental and numerical study of periodic flow in a curved tube. J Fluid Mech 100(3):623–638

    Article  Google Scholar 

  • Lyne WH (1970) Unsteady viscous flow in a curved pipe. J Fluid Mech 45(1):13–31

    Article  Google Scholar 

  • Marble FE (1985) Growth of a diffusion flame in the field of a vortex, Recent advances in the aerospace sciences. Plenum Publishing, New York

    Google Scholar 

  • Mills AF (1995) Basic heat and mass transfer. IRWIN Press, Chicago

    MATH  Google Scholar 

  • Mullin T, Greated CA (1980) Oscillatory flow in curved pipes, part 1: the developing flow case. J Fluid Mech 98(2):383–395

    Article  MathSciNet  MATH  Google Scholar 

  • Munson BR (1975) Experimental results for oscillating flow in a curved pipe. Phys Fluids 18(12):1607–1609

    Article  Google Scholar 

  • Nunge RJ, Lin TS, Gill N (1972) Laminar dispersion in curved tubes and channels. J Fluid Mech 51:363–383

    Article  MATH  Google Scholar 

  • Pedley TJ (1980) The fluid mechanics of large blood vessels. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, Cambridge, pp 160–224. ISBN 0521226260

  • Peerhossaini H, Wesfreid JE (1988) On the inner structure of Görtler rolls. Int J Heat Fluid Flow 9:12–18

    Article  Google Scholar 

  • Sharp MK, Kamm RD, Shapiro AH, Kimmel E, Karnidakis GE (1991) Dispersion in a curved tube during oscillatory flow. J Fluid Mech 223:537–563

    Article  Google Scholar 

  • Siggers JH, Waters SL (2008) Unsteady flows in pipes with finite curvature. J Fluid Mech 600:133–165

    Article  MathSciNet  MATH  Google Scholar 

  • Simon HA, Chang MH, Chow JCF (1977) Heat transfer in curved tubes with pulsatile, fully developed, laminar flows. ASME J Heat Transf 99:590–595

    Article  Google Scholar 

  • Siouffi M, Deplano V, Pelissier R (1988) Experimental analysis of unsteady flows in stenosis. J Biomech 31:11–19

    Article  Google Scholar 

  • Smith FT (1975) Pulsatile flow in curved pipes. J Fluid Mech 71(1):15–42

    Article  MATH  Google Scholar 

  • Sudo K, Sumida M, Yamane R (1992) Secondary motion of fully developed oscillatory flow in curved pipe. J Fluid Mech 237:189–208

    Article  Google Scholar 

  • Sumida M (2007) Pulsatile entrance flow in curved pipes: effect of various parameters. Exp Fluids 43(6):949–958. doi:10.1007/s00348-007-0365-4

    Article  Google Scholar 

  • Sumida M, Sudo K, Wada H (1989) Pulsating flow in a curved pipe (secondary flow). JSME Int J 32(4):523–531

    Google Scholar 

  • Swanson CJ, Stalp SR, Donnelly RJ (1993) Experimental investigation of periodic flow in curved pipes. J Fluid Mech 256:69–83

    Article  Google Scholar 

  • Tada S, Oshima S, Yamne R (1996) Classification of pulsating flow patterns in curved pipes. J Biomech Eng 118(3):311–317

    Article  Google Scholar 

  • Talbot L, Gong KO (1983) Pulsatile entrance flow in a curved pipe. J Fluid Mech 127:1–25

    Article  Google Scholar 

  • Timité B (2005) Etude de l’écoulement de Dean alterné pulse: mise en évidence du comportement chaotique. PhD thesis, Ecole Polytechnique—University of Nantes

  • Timité B, Jarrahi M, Castelain C, Peerhossaini H (2009) Pulsating flow for mixing intensification in a twisted curved pipe. ASME J Fluid Eng 131:121104_1–121104_10

    Article  Google Scholar 

  • Toé R, Ajakh A, Peerhossaini H (2002) Heat transfer enhancement by Görtler instability, Int. J. Heat Fluid Flow 23:184–204

    Article  Google Scholar 

  • Topakoglu HC (1967) Steady laminar flows of an incompressible viscous fluid in curved pipes. J Math Mech 16:1321–1338

    MATH  Google Scholar 

  • Toshihiro T, Kouzou S, Masaru S (1984) Pulsating flow in curved pipes: 1. Numerical and approximate analysis. Bull JSME 27(234):2706–2713

    Google Scholar 

  • Zabielski L, Mestel AJ (1998) Unsteady blood flow in a helically symmetric pipe. J Fluid Mech 370:321–345

    Article  MathSciNet  MATH  Google Scholar 

  • Zalosh RG, Nelson WG (1973) Pulsating flow in a curved tube. J Fluid Mech 59(4):693–705

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Peerhossaini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarrahi, M., Castelain, C. & Peerhossaini, H. Secondary flow patterns and mixing in laminar pulsating flow through a curved pipe. Exp Fluids 50, 1539–1558 (2011). https://doi.org/10.1007/s00348-010-1012-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-010-1012-z

Keywords

Navigation