Skip to main content
Log in

Synchronized analysis of an unsteady laminar flow downstream of a circular cylinder centred between two parallel walls using PIV and mass transfer probes

  • Review Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Experiments are carried out in the wake of a cylinder of d c  = 10 mm diameter placed symmetrically between two parallel walls with a blockage ratio r = 1/3 and a Reynolds number varying between 75 ≤ Re ≤ 277. Particle image velocimetry is exerted to obtain the instantaneous velocity components in the cylinder wake. A snapshot proper orthogonal decomposition (POD) is also applied to these PIV results in order to extract the dominant modes through the implementation of an inhomogeneous filtering of these different snapshots, apart from an interpolation to estimate the wall shear rate at the lower wall downstream the cylinder. Mass transfer circular probes are placed at the lower wall downstream this obstacle so as to further determine the time evolution of the wall shear rate, by bringing the inverse method to bear on the convective-diffusion equation. Comparisons between the two synchronized techniques demonstrate that electrochemical method can give more accurate information about the coherent structures present in the flow and about the interaction of the von Kármán vortices with the walls of the tunnel as well. The comparison between the two measurement techniques in the flow regions concerns the spatiotemporal evolutions of the wall shear rate obtained from PIV measurements and the wall shear rate using mass transfer probes. Discrepancy between the PIV measurements and the electrochemical ones near the wall, where the secondary vortices P 1′ are generated at wall, are caused by a PIV bias and a limitations of the singular mass transfer probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Bearman PW, Zdravkovich MM (1978) Flow around a circular cylinder near a plane boundary. J Fluid Mech 89:33–47

    Article  Google Scholar 

  • Beck JV, Blackwell B, St-Clair CR (1985) Inverse heat conduction. Wiley, New York

    MATH  Google Scholar 

  • Bendada A, Lamontagne M (2004) Analysis of thermal contact resistance between polymer and mold in injection molding. Appl Therm Eng 24:2029–2040

    Article  Google Scholar 

  • Carte G (1994) Simulation d’écoulements instationnaires à dominante périodique. Application aux sillages laminaires et turbulents. Ph.D. thesis, Université Aix-Marseille II

  • Cerretelli C, Williamson CHK (2003) A new family of uniform vortices related to vortex configurations before merging. J Fluid Mech 493:219–229

    Article  MATH  MathSciNet  Google Scholar 

  • Chantasiriwan S (1999) Comparison of three sequential function specification algorithms for the inverse heat conduction problem. Int Commun Heat Mass Transf 26:115–124

    Article  Google Scholar 

  • Chen JH, Pritchard WG, Tavener SJ (1995) Bifurcation for flow past a cylinder between parallel planes. J Fluid Mech 284:23–41

    Article  MATH  MathSciNet  Google Scholar 

  • Coutanceau M, Bouard R (1977) Experimental determination of the main features of the viscous flow in the wake of a cylinder in uniform translation. Part 1: steady flow. J Fluid Mech 79:231–256

    Article  Google Scholar 

  • Deslouis C, Gil O, Tribollet B (1989) Frequency response of electrochemical sensors to hydrodynamic fluctuations. J Fluid Mech 215:85–100

    Article  Google Scholar 

  • Dumas T, Lesage F, Sobolik V, Latifi MA (2009) Local flow direction measurements using tri-segmented microelectrode in packed beds. Chem Eng Res Des 87:962–966

    Article  Google Scholar 

  • Geers LFG, Tummers MJ, Hanjalic K (2005) Particle imaging velocimetry-based identification of coherent structures in normally impinging multiple jets. Phys Fluids 17:1–13

    Article  Google Scholar 

  • Graftieaux L, Michard M, Grosjean N (2001) Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas Sci Technol 1422–1429

  • Guerrouache MS (2000) Étude numérique de l’instabilité de Bénard-Kármán derrière un cylindre fixe ou en mouvement périodique. Dynamique de l’écoulement et advection chaotique. Ph.D. thesis, Université de Nantes

  • Hunt JC, Wray AA, Moin P (1988) Eddies, stream and convergence zones in turbulent flows. Center for Turbulence Research Report, Stanford, CTR—S88, pp 193–208

  • ITTC Procedures and Guidelines (2008) Uncertainty analysis: particle image velocimetry. In: 25th international towing tank conference, Fukuoka, Japan, September 14–20, 2008

  • Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94

    Article  MATH  MathSciNet  Google Scholar 

  • Lei C, Cheng L, Kavanagh K (1999) Re-examination of the effects of a plane boundary on force and vortex shedding of a circular cylinder. J Wind Eng Ind Aerodyn 80:263–286

    Article  Google Scholar 

  • Levich VG (1962) Physicochemical Hydrodynamics. Prentice-Hall Inc., Englewood Cliffs

    Google Scholar 

  • Lumley JL (1967) The structure of inhomogeneous turbulence. In: Yagolm AL (ed) Atmospheric turbulence and radio wave propagation. Tatarskiva Editions, Nauka, pp 166–178

  • Mao Z, Hanratty TJ (1989) Analysis of wall shear stress probes in large amplitude unsteady flows. Int J Heat Mass Transf 34:281–290

    Google Scholar 

  • Markovic A (1995) An investigation of sparse matrix solvers with applications to models of transport in porous media, Master in sciences. Center in Statistical Science and Industrial Mathematics. Queensland University of Technology

  • Natarajan NM, Lakshmanan P (1972) Laminar flow in rectangular ducts: prediction of velocity profiles and friction factor. Indian J Technol 10:435–438

    Google Scholar 

  • Patankar SV (1980) Numerical heat transfer fluid flow. Hemisphere/Mc Graw-Hill, New York

    MATH  Google Scholar 

  • Rehimi F (2006) Caractérisation expérimentale des structures tourbillonnaires derrière un cylindre en milieu confiné par la PIV et la Polarographie. Ph.D. thesis, Université de Nantes

  • Rehimi F, Aloui F, Ben Nasrallah S, Doubliez L, Legrand J (2006) Inverse method for electrodiffusional diagnostics of flows. Int J Heat Mass Transf 49:1242–1254

    Article  MATH  Google Scholar 

  • Rehimi F, Aloui F, Ben Nasrallah S, Doubliez L, Legrand J (2008) Experimental investigation of a confined flow downstream a circular cylinder centred between two parallel walls. J Fluids Struct 24(6):855–882

    Article  Google Scholar 

  • Reiss LP, Hanratty TJ (1962) An experimental study of the unsteady nature of the viscous sub-layer. AIChE J 154–160

  • Sahin M, Owens RG (2004) A numerical investigation of wall effects up to high blockage ratios on two-dimensional flow past a confined circular cylinder. Phys Fluids 16:1305–1320

    Article  Google Scholar 

  • Sirovich L (1987) Turbulence and dynamics of coherent structures part 1: coherent structures. Q Appl Math 45(3):561–571

    MATH  MathSciNet  Google Scholar 

  • Sobolik V, Wein O, Cermak J (1987) Simultaneous measurement of film thickness and wall shear stress in wavy flow of non-Newtonian liquids. Collection Czechoslovak Chem Comun 52:913–928

    Article  Google Scholar 

  • Sobolik V, Tihon J, Wein O, Wichterle K (1998) Calibration of electrodiffusion friction probes using a voltage-step transient. J Appl Electrochem 28:329–335

    Article  Google Scholar 

  • Taniguchi S, Miyakoshi K (1990) Fluctuating fluid forces acting on a circular cylinder and interference with a plane wall. Exp Fluids 9(4):197–204

    Article  Google Scholar 

  • Williamson CHK (1989) Defining a universal and continuous Strouhal-Reynolds number relationship for the laminar vortex shedding of a circular cylinder at low Reynolds number. Phys Fluids 31:2742

    Article  Google Scholar 

  • Williamson CHK (1996) Vortex dynamics in the cylinder wake. Ann Rev Fluid Mech 28:477–539

    Article  Google Scholar 

  • Yang JD, Shehata A, Modi V, West AC (1997) Mass-transfer to a channel wall downstream of a cylinder. Int J Heat Mass Transf 40(18):4263–4271

    Article  Google Scholar 

  • Zovatto L, Pedrizzetti G (2001) Flow about a circular cylinder between parallel walls. J Fluid Mech 440:1–25

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Aloui.

Appendix: Uncertainty analysis

Appendix: Uncertainty analysis

1.1 Electrochemical uncertainty calculation

The total uncertainty t u on the velocity calculation using PIV measurements is calculated as:

$$ t_{u} = \sqrt {P_{u}^{2} + B_{u}^{2} } $$

where B u is the bias on the velocity and P u is the precision on the measurements of a steady velocity, which can be calculated in absence of the cylinder in the same position and at the same Reynolds number as follows:

$$ P_{u} = t_{0.975} \cdot {\frac{{\hat{\sigma }_{u} }}{{\sqrt {N_{m} } }}} $$

where \( t_{0.975} = t_{\text{student}} \left( {0.975;N_{m} - 1} \right) \) is the confidence coefficient for a confidence level of 95% and N m  − 1 Freedom degree. t 0.975 ≈ 1.984 for N m  = 100 measurement repetition. \( \hat{\sigma }_{u} \) is the estimated standard deviation defined as:

$$ \hat{\sigma }_{u} = \sqrt {{\frac{1}{{N_{m} - 1}}}\sum\limits_{i = 1}^{{N_{m} }} {\left( {U_{i} \left( {x,y} \right) - \overline{{U\left( {x,y} \right)}} } \right)}^{2} } $$

and \( \overline{{U\left( {x,y} \right)}} = {\frac{1}{{N_{m} }}}\sum\nolimits_{i = 1}^{{N_{m} }} {U_{i} \left( {x,y} \right)} . \)

The following table resumes the experimental PIV conditions that are used for the calculation of the bias uncertainty.

Summary of measurement conditions

Target flow

2-D water flow

 

Measurement facility

Circulating water channel

 

Measurement area

81.73 × 60.59 mm2

 

Reference velocity

0.01 m/s

 

Calibration

  

 Distance of reference points l r

81.73 mm

 

 Distance of reference image L r

1,600 pixels

 

 Magnification factor α

0.0511 mm/pixel

 

Flow visualization

  

 Tracer particle

Spherical polyamide particle

 

 Average diameter dp

0.05 mm

 

 Standard deviation of diameter sp

0.005 mm

 

 Average specific gravity

1.02

 

 Light source

Double pulse Nd:YAG laser

 

 Laser power

15 mJ

 

 Thickness of laser light sheet

1.0 mm

 

 Time interval Δt

25 ms

 

Image detection

  

 Camera

  

 Spatial resolution

1,600 × 1,086 pixels

 

 Sampling frequency

30 Hz

 

 Gray scale resolution

8 bit

 

Optical system

  

 Distance from the target l t

1,100 mm

 

 Length of focus

60 mm

 

 F number of lens

f 2.8

 

 Perspective angle θ

 

Data processing

  

 Pixel unit analysis

Adaptative cross-correlation method

 

 Correlation area size

32 × 32 pixels

 

Flow speed U is calculated in PIV measurements using this equation:

$$ U = \alpha \cdot {\frac{\Updelta X}{\Updelta t}} + \delta u $$

where ΔX is the particle displacement, Δt is the time interval of successive images, α is the magnification factor, and δu are the errors caused by particles trajectories and by the dimensional effects.

The uncertainty of the velocity can be computed as

$$ \delta U = \sqrt {\left( {{\frac{\partial U}{{\partial \left( {\Updelta X} \right)}}}} \right)^{2} \left( {\delta \left( {\Updelta X} \right)} \right)^{2} + \left( {{\frac{\partial U}{\partial M}}} \right)^{2} \left( {\delta M} \right)^{2} + \left( {{\frac{\partial U}{{\partial \left( {\Updelta t} \right)}}}} \right)^{2} \left( {\delta \left( {\Updelta t} \right)} \right)^{2} + \left( {\delta u} \right)^{2} } $$

where

$$ {\frac{\partial U}{{\partial \left( {\Updelta X} \right)}}} = {\frac{\alpha }{\Updelta t}} $$
$$ {\frac{\partial U}{\partial \left( \alpha \right)}} = - {\frac{\Updelta X}{\Updelta t}} = - {\frac{U}{\alpha }} $$
$$ {\frac{\partial U}{{\partial \left( {\Updelta t} \right)}}} = - \alpha {\frac{\Updelta X}{{\left( {\Updelta t} \right)^{2} }}} = - {\frac{U}{\Updelta t}} $$

In order to compute the uncertainty of the velocity, uncertainties in magnification, displacement, and time between frames should be computed. The procedure adopted for uncertainty calculation is well discussed in (ITTC 2008).

 

Parameter

Category

Error sources

u (x i ) (unit)

c i (unit)

c i u i

u c

α (mm/pixel)

Calibration

Reference image

0.7 (pixel)

3.193 × 10−5

2.24 × 10−5

3.89 × 10−4

Physical distance

0.02 (mm)

6.25 × 10−4

1.25 × 10−5

Image distortion by lens

8 (pixel)

3.193 × 10−5

2.55 × 10−4

Image distortion by CCD

0.0056 (pixel)

5.11 × 10−2

2.86 × 10−4

Parallel board

0.035 (rad)

1.8 × 10−3

6.3 × 10−5

X (pixel)

Acquisition

Laser power fluctuation

10−5 (mm)

19.58

1.96 × 10−4

0.202

Image distortion by CCD

5.6 × 10−3 (pixel)

1

5.6 × 10−3

Normal view angle

0.035 (rad)

5.11 × 10−2

1.79 × 10−3

Reduction

Mis-matching error

0.2 (pixel)

1.0

0.2

Sub-pixel analysis

0.03 (pixel)

1.0

0.03

t (s)

Acquisition

Delay generator

2 × 10−9 (s)

1.0

2 × 10−9

1.02 × 10−8

Pulse time

10−8 (s)

1.0

10−8

δu (mm/s)

Experiment

Particle trajectory

10−3 (mm/s)

1.0

10−3

7.3 × 10−3

3-D effect

7.3 × 10−3 (mm/s)

1.0

7.3 × 10−3

Standard uncertainty u(x i ), u c is the combined uncertainty, \( c_{i} = {\frac{\partial f}{{\partial x_{i} }}} \) and \( u_{c} = \sqrt {\sum\nolimits_{i} {\left( {c_{i} \cdot u_{i} } \right)^{2} } } \)

Example with a reference velocity U ≈ 10 mm/s

Parameter

Error sources

u c (x i ) (unit)

c i (unit)

c i u i

α

Magnification factor

3.89 × 10−4 (mm/pixel)

195.8 (pixel/s)

7.62 × 10−2 (mm/s)

X

Image displacement

0.202 (pixel)

2.554 (mm/pixel/s)

0.52 (mm/s)

t

Image interval

1.02 × 10−8 (s)

500 (mm/s2)

5.1 × 10−6 (mm/s)

δu

Experiment

7.3 × 10−3 (mm/s)

1.0

7.3 × 10−3 (mm/s)

  

Combined uncertainty B u

0.522 (mm/s)

Example with a reference velocity U ≈ 18.5 mm/s

Parameter

Error sources

u(x i ) (unit)

c i (unit)

c i u i

α

Magnification factor

3.89 × 10−4 (mm/pixel)

362.04 (pixel/s)

7.62 × 10−2 (mm/s)

X

Image displacement

0.202 (pixel)

2.554 (mm/pixel/s)

0.52 (mm/s)

t

Image interval

1.02 × 10−8 (s)

925 (mm/s2)

5.1 × 10−6 (mm/s)

δu

Experiment

1.49 × 10−2 (mm/s)

1.0

1.49 × 10−2 (mm/s)

  

Combined uncertainty B u

0.535 (mm/s)

The precision P u is defined in the flow section for different Reynolds number in absence of the cylinder. The results on the relative precision uncertainty are presented in the following figure.

figure a

After calculating the precision uncertainty, the total uncertainty is calculated which is maximum near the wall about \( {\frac{{t_{u} }}{{\bar{U}}}} = 12.4\% \) for Re = 159 and \( {\frac{{t_{u} }}{{\bar{U}}}} = 9.4\% \) for Re = 277.

After calculating the total uncertainty near the wall, the uncertainty on the wall shear rate estimated using PIV method is calculated as follows:

$$ {\frac{{{\text{d}}\bar{S}_{\text{PIV}} }}{{\bar{S}_{\text{PIV}} }}} = {\frac{{{\text{d}}\overline{U} \left( {x,\Updelta y} \right)}}{{\overline{U} \left( {x,\Updelta y} \right)}}} + {\frac{{{\text{d}}\left( {\Updelta y} \right)}}{{\left( {\Updelta y} \right)}}} = {\frac{{t_{u} \left( {x,\Updelta y} \right)}}{{\overline{U} \left( {x,\Updelta y} \right)}}} + {\frac{{{\text{d}}\left( {\Updelta y} \right)}}{{\left( {\Updelta y} \right)}}} $$

since \( S_{\text{PIV}} = \overline{U} \left( {x,\Updelta y} \right)/\Updelta y. \)

The total relative uncertainty \( {\frac{{\Updelta \bar{S}_{\text{PIV}} }}{{\bar{S}_{\text{PIV}} }}} \) is calculated as follows:

$$ {\frac{{\Updelta \bar{S}_{\text{PIV}} }}{{\bar{S}_{\text{PIV}} }}} = \sqrt {\left( {{\frac{{t_{u} \left( {x,\Updelta y} \right)}}{{\overline{U} \left( {x,\Updelta y} \right)}}}} \right)^{2} + \left( {{\frac{{\Updelta \left( {\Updelta y} \right)}}{{\left( {\Updelta y} \right)}}}} \right)^{2} } . $$

Finally and since \( {\frac{{\Updelta \left( {\Updelta y} \right)}}{{\left( {\Updelta y} \right)}}} \) is about 5%, the relative uncertainty on wall shear rate calculated using PIV measurements is about 13.4% for Re = 159 and 10.34% for Re = 277.

1.2 Electrochemical uncertainty calculation

The electrical current delivered by a d s diameter circular mass transfer probe in permanent regime can be expressed at high Peclet number as follows:

$$ I = 0,807nFC_{0} A_{S} \frac{D}{l}Pe^{{\frac{1}{3}}} = 0.6772nFC_{0} D^{{\frac{2}{3}}} \cdot d_{s}^{{\frac{5}{3}}} \cdot \bar{S}^{{\frac{1}{3}}} . $$

By differentiation, we obtain the following equation:

$$ {\frac{{{\text{d}}I}}{I}} = \frac{2}{3}{\frac{{{\text{d}}D}}{D}} + \frac{5}{3}{\frac{{{\text{d}}\left( {d_{s} } \right)}}{{d_{s} }}} + \frac{1}{3}{\frac{{{\text{d}}\bar{S}}}{{\bar{S}}}} + {\frac{{{\text{d}}C_{0} }}{{C_{0} }}}. $$

Finally, \( {\frac{{\Updelta \bar{S}}}{{\bar{S}}}} = \sqrt {\left( {3 \cdot {\frac{\Updelta I}{I}}} \right)^{2} + \left( {2 \cdot {\frac{\Updelta D}{D}}} \right)^{2} + \left( {5 \cdot {\frac{{\Updelta \left( {d_{s} } \right)}}{{d_{s} }}}} \right)^{2} + \left( {3 \cdot {\frac{{\Updelta C_{0} }}{{C_{0} }}}} \right)^{2} }. \) In fact, the bias uncertainty on the wall shear is the due to an uncertainty on the current measurements and conversion binary data by using a 12-bit A/D converter that introduces an uncertainty of 0.1–0.2%; an uncertainty on the molecular diffusion coefficient which is about 1%; an uncertainty on the concentration estimation which is about 2% (Levich 1962); and an uncertainty on the active diameter of the mass transfer probe is about 2% (Sobolik et al. 1998). The total effective uncertainty is about \( {\frac{{\Updelta \bar{S}}}{{\bar{S}}}} \approx 12\% , \) and it is essentially due to the uncertainty on active probe diameter or surface. For this reason, it is interesting in many cases to make in situ probes calibration at high Peclet numbers and moderate fluctuations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehimi, F., Aloui, F. Synchronized analysis of an unsteady laminar flow downstream of a circular cylinder centred between two parallel walls using PIV and mass transfer probes. Exp Fluids 51, 1–22 (2011). https://doi.org/10.1007/s00348-010-1005-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-010-1005-y

Keywords

Navigation