Skip to main content
Log in

Normal and cross-flow Reynolds stresses: differences between confined and semi-confined flows

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Understanding turbulent wall-bounded flows remains an elusive goal. Most turbulent phenomena are non-linear, complex and have broad range of scales that are difficult to completely resolve. Progress is made only in minute steps and enlightening models are rare. Herein, we undertake the effort to bundle several experimental and numerical databases to overcome some of these difficulties and to learn more about the kinematics of turbulent wall-bounded flows. The general scope of the present work is to quantify the characteristics of wall-normal and spanwise Reynolds stresses, which might be different for confined (e.g., pipe) and semi-confined (e.g., boundary layer) flows. In particular, the peak position of wall-normal stress and a shoulder in spanwise stress never described in detail before are investigated using select experimental and direct numerical simulation databases available in the open literature. It is found that the positions of the \( \left\langle {v'{^2} } \right\rangle^{ + } \)-peak in confined and semi-confined flow differ significantly above δ + ≈ 600. A similar behavior is found for the position of the \( \left\langle {u'v'} \right\rangle^{ + } \)-peak. The upper end of the logarithmic region seems to be closely related to the position of the \( \left\langle {v'{^2} } \right\rangle^{ + } \)-peak. The \( \left\langle {w'{^2} } \right\rangle^{ + } \)-shoulder is found to be twice as far from the wall than the \( \left\langle {v'{^2} } \right\rangle^{ + } \)-peak. It covers a significantly large portion of the typical zero-pressure-gradient turbulent boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Strict self-similarity is here understood as the state where all moments of the velocity fluctuations taken at different streamwise positions and properly normalized collapse in single curves for the entire wall flow. The equilibrium adverse-pressure-gradient turbulent boundary layer investigated by Skåre and Krogstad (1994) is an appropriate example for that state.

  2. Comte-Bellot’s (1965) data (red symbols in Fig. 1) will be discussed in one of the following paragraphs.

  3. Note that Österlund’s (1999) log law has parameters κ = 0.38 and B = 4.1, which differ from the classical κ = 0.41 and B = 5 and may affect the determination of the mean-flow logarithmic region.

  4. Of course there is still a third, the acherontic option, that due to possible super-grid problems, the influence of the large scales on the v-fluctuations is not properly captured by recent DNS and therefore all of them are discredited. However, because there are no cogent arguments for this option, we will not follow this track.

Abbreviations

u′ v′ w′ :

Velocity fluctuations in streamwise, wall-normal, and spanwise direction

\( u_{e} \) :

Velocity at the edge of the boundary layer or the channel’s centerline

\( u_{\tau } \) :

Wall skin-friction velocity

\( \left\langle {u'v'} \right\rangle^{ + } \) :

Reynolds shear stress, normalized with inner variables

\( \left\langle {v'{^2} } \right\rangle^{ + } \) :

Wall-normal stress, normalized with inner variables

\( \left\langle {w'{^2} } \right\rangle^{ + } \) :

Spanwise stress, normalized with inner variables

y :

Wall-normal coordinate

\( y_{puv}^{ + } = {{y_{puv} u_{\tau } } \mathord{\left/ {\vphantom {{y_{puv} u_{\tau } } \nu }} \right. \kern-\nulldelimiterspace} \nu } \) :

Peak position of Reynolds shear stress, normalized with inner variables

\( y_{pv}^{ + } = {{y_{pv} u_{\tau } } \mathord{\left/ {\vphantom {{y_{pv} u_{\tau } } \nu }} \right. \kern-\nulldelimiterspace} \nu } \) :

Peak position of wall-normal stress, normalized with inner variables

\( y_{sw}^{ + } = {{y_{sw} u_{\tau } } \mathord{\left/ {\vphantom {{y_{sw} u_{\tau } } \nu }} \right. \kern-\nulldelimiterspace} \nu } \) :

Shoulder position of spanwise stress, normalized with inner variables

\( \delta \) :

Boundary-layer thickness, half channel height or pipe radius

\( \delta^{ + } = {{\delta u_{\tau } } \mathord{\left/ {\vphantom {{\delta u_{\tau } } \nu }} \right. \kern-\nulldelimiterspace} \nu } \) :

Kármán number

\( \Upgamma_{1} ,\Upgamma_{2} \) :

Diagnosis functions

\( \eta_{pv} = {{y_{pv} } \mathord{\left/ {\vphantom {{y_{pv} } \delta }} \right. \kern-\nulldelimiterspace} \delta } \) :

Peak position of wall-normal stress, normalized with outer variables

\( \nu \) :

Kinematic viscosity

References

  • Abe H, Kawamura H, Matsuo Y (2004) Surface heat-flux fluctuations in a turbulent channel flow up to Re = 1020 with Pr = 0.025 and 0.71. Int J Heat Fluid Flow 25:404–419. http://murasun.me.noda.tus.ac.jp/turbulence/,  Accessed 10 Nov 2009

  • Adrian RJ (2007) Hairpin vortex organization in wall turbulence. Phys Fluids 19:041301

    Article  Google Scholar 

  • Antonia RA, Kim J, Browne LWB (1991) Some characteristics of small-scale turbulence in a turbulent duct flow. J Fluid Mech 233:369–388

    Article  MATH  Google Scholar 

  • Bruns J, Dengel P, Fernholz HH (1992) Mean flow and turbulence measurements in an incompressible two-dimensional turbulent boundary layer part I: data. Herman-Föttinger Institut für Thermo- und Fluiddynamik, TU-Berlin

    Google Scholar 

  • Buschmann MH, Gad-el-Hak M (2003) Debate concerning the mean-velocity profile of a turbulent boundary layer. AIAA J 41:565–572

    Article  Google Scholar 

  • Buschmann MH, Gad-el-Hak M (2007) Recent developments in scaling of wall-bounded flows. Prog Aerospace Sci 42:419–467

    Article  Google Scholar 

  • Buschmann MH, Gad-el-Hak M (2009) Evidence of nonlogarithmic behavior of turbulent channel and pipe flow. AIAA J 47:535–541

    Article  Google Scholar 

  • Buschmann MH, Indinger T, Gad-el-Hak M (2009) Near-wall behavior of turbulent wall-bounded flows. Int J Heat Fluid Flow 30:993–1006

    Article  Google Scholar 

  • Carlier J, Stanislas M (2005) Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry. J Fluid Mech 535:143–188

    Article  MATH  MathSciNet  Google Scholar 

  • Comte-Bellot G (1965) Ecoulement turbulent entre deux parois paralleles. Tech Rep 419, Publications Scientifiques et Techniques du Ministere de l’Air, Paris. http://torroja.dmt.upm.es/ftp/AGARD/chapter5/PCH13/,  Accessed 09 Nov 2009

  • DeGraaff DB, Eaton JK (2000) Reynolds-number scaling of the flat-plate turbulent boundary layer. J Fluid Mech 422:319–346

    Article  MATH  Google Scholar 

  • Fernholz HH, Finley PJ (1996) The incompressible zero-pressure-gradient turbulent boundary layer: an assessment of the data. Prog Aerospace Sci 32:245–311

    Article  Google Scholar 

  • Gad-el-Hak M, Blackwelder RF, Riley JJ (1981) On the growth of turbulent regions in laminar boundary layers. J Fluid Mech 110:73–952

    Article  Google Scholar 

  • George WK, Castillo L (1997) Zero-pressure-gradient turbulent boundary layer. Applied Mech Rev 50:689–729

    Article  Google Scholar 

  • Hoyas S, Jiménez J (2006) Scaling of velocity fluctuations in turbulent channels up to Re = 2,000. Physics of Fluids 18:011702. http://torroja.dmt.upm.es/ftp/channels/data/,  Accessed 10 Nov 2009

  • Hoyas S, Jiménez J (2008) Turbulent fluctuations above the buffer layer of wall-bounded flows. J Fluid Mech 611:215–236

    MATH  Google Scholar 

  • Hu ZW, Morfey CL, Sandham ND (2006) Wall pressure and shear stress spectra from direct simulations of channel flow. AIAA J 44:1541–1549. http://www.cse.scitech.ac.uk/ceg/uktc/database/00001/index.html,  Accessed 10 Nov 2009

    Google Scholar 

  • Hutchins N, Marusic I (2007) Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J Fluid Mech 579:1–28

    Article  MATH  Google Scholar 

  • Hutchins N, Nickels TB, Marusic I, Chong MS (2009) Hot-wire spatial resolution issues in wall-bounded turbulence. J Fluid Mech 635:103–136

    Article  MATH  Google Scholar 

  • Iwamoto K, Suzuki Y, Kasagi N (2002) Reynolds number effect on wall turbulence: toward effective feedback control. Int J Heat Fluid Flow 23:678–689. http://www.thtlab.t.u-tokyo.ac.jp/, Accessed 10 Nov 2009

    Google Scholar 

  • Iwamoto K, Tsukahara T, Nakano H, Kawamura H (2008) Effect of large-scale structures upon near-wall turbulence. In: Kaneda Y (ed) IUTAM symposium on computational physics and new perspectives in turbulence, pp 55–60

  • Laadhari F (2002) On the evolution of maximum turbulent kinetic energy production in a channel flow. Phys Fluids 14:L65–L68

    Article  Google Scholar 

  • Manna M, Vacca A (2001) Scaling properties of turbulent pipe flow at low Reynolds numbers. Comput Fluids 30:393–415

    Article  MATH  Google Scholar 

  • Mathis R, Monty JP, Hutchins N, Marusic I (2009) Comparison of large-scale amplitude modulation in turbulent boundary layers, pipes, and channel flows. Physics of Fluids 21:111703

  • McKeon BJ, Li J, Jiang W, Morrison JF, Smits AJ (2004) Further observations on the mean velocity distribution in fully developed pipe flow. J Fluid Mech 501:135–147. http://gasdyn.princeton.edu/data/e248/mckeon_data.html, Accessed 10 Nov 2009

    Google Scholar 

  • Millikan CB (1938) A critical discussion of turbulent flows in channels and circular tubes. In: Den Hartog JP, Peters H (eds) Proceedings of the Fifth International congress on applied mechanics. Wiley, New York, pp 386–392

  • Mochizuki S, Nieuwstadt FTM (1996) Reynolds-number-dependence of the maximum in the streamwise velocity fluctuations in wall turbulence. Exp Fluids 21:218–226

    Article  Google Scholar 

  • Monty JP, Stewart JA, Williams RC, Chong MS (2007) Large-scale features in turbulent pipe and channel flows. J Fluid Mech 589:147–156

    Article  MATH  Google Scholar 

  • Monty JP, Hutchins N, Ng HCH, Marusic I, Chong MS (2009) A comparison of turbulent pipe, channel and boundary layer flows. J Fluid Mech 632:431–442

    Article  MATH  Google Scholar 

  • Moser RD, Kim J, Mansour NN (1999) Direct numerical simulation of turbulent channel flow up to \({\text{Re}}_{\tau}\) = 590. Phys Fluids 11(4):943–945. http://turbulence.ices.utexas.edu/MKM_1999.html, Accessed 10 Nov 2009

  • Nagano Y, Tagawa M, Tsuji T (1992) Effects on adverse pressure gradient on mean flow and turbulence statistics in a boundary layer. In: Durst F, Friedrich R, Launder BE, Schmidt FW, Schuhmann U, Whitelaw JH (eds) Turbulent shear flow, vol 8. Springer, Berlin, pp 7–21

    Google Scholar 

  • Nieuwstadt FTM, Bradshaw P (1997) Similarities and differences of turbulent boundary-layer, pipe and channel flow. In: Henkes RAWH, Bakker PG (eds) Boundary-layer separation in aircraft aerodynamics. Delft University Press, Delft, pp 15–22

    Google Scholar 

  • Nockemann M, Abstiens R, Schober M, Bruns J, Eckert D (1994) Messungen in einer turbulenten Wandgrenzschicht bei grossen Reynolds-Zahlen im Deutsch-Niederländischen Windkanal Messbericht. In: Krause E (ed), Abhandlungen aus dem Aerodynamischen Institut der RWTH Aachen

  • Osaka H, Kameda T, Mochizuki S (1998) Re-examination of the Reynolds number effect on the mean flow quantities in a smooth wall turbulent boundary layer. JSME Int J 41:123–129

    Google Scholar 

  • Österlund JM (1999) Experimental studies of zero-pressure gradient turbulent boundary-layer flow. Ph.D. thesis, Royal Institute of Technology (KTH), Stockholm, Sweden

  • Perry AE, Joubert PN (1963) Rough-wall boundary layers in adverse pressure gradients. J Fluid Mech 17 (2):193–211. http://torroja.dmt.upm.es/ftp/AGARD/chapter5/PCH02/, Accessed 09 Nov 2009

    Google Scholar 

  • Roach PE, Brierley DH (1990) The influence of a turbulent free stream on zero pressure gradient transitional boundary layer development. Part 1: test-cases T3A and T3B. In: Pironneau D, Rode W, Ryhming IL (eds) Numerical simulation of unsteady flows and transition to turbulence. Cambridge University Press, Cambridge. http://cfd.mace.manchester.ac.uk/ercoftac/classif.html, Accessed 09 Nov 2009

  • Simens MP, Jimenéz J, Hoyas S, Mizuno Y (2009) A high-resolution code for turbulent boundary layers J Computational Physics 228(11):4218–4231. http://torroja.dmt.upm.es/ftp/blayers/, Accessed 12 Nov 2009

    Google Scholar 

  • Skåre PE, Krogstad PA (1994) A turbulent equilibrium boundary layer near separation. J Fluid Mech 272:319–348

    Article  Google Scholar 

  • Smith RW (1994) Effect of Reynolds number on the structure of turbulent boundary layers. PhD thesis Princeton University, Department of Mechanical and Aerospace Engineering, Report 1984-T. http://gasdyn.princeton.edu/data/e62/incompressible_boundary_layer_data.html/, Accessed 10 Nov 2009

  • Spalart P. (1989) Direct simulation of turbulent boundary layer up to ReΘ = 1410. J Fluid Mech 187:61-98. http://cfd.mace.manchester.ac.uk/ercoftac/, Accessed 09 Nov 2009

  • Sreenivasan KR (1989) The turbulent boundary layer. In: Gad-el-Hak M (ed) Lecture notes in engineering: frontiers in experimental fluid mechanics, Springer Berlin

  • Sreenivasan KR, Sahay A (1997) The persistence of viscous effects in the overlap region, and the mean velocity in turbulent pipe and channel flows. In: Panton R (ed) Self-sustaining mechanisms of wall turbulence. Computational Mechanics Publications, Southampton

    Google Scholar 

  • Townsend AA (1976) The structure of turbulent shear flow. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Tsuji Y, Fransson JHM, Alfredsson PH, Johansson AV (2007) Pressure statistics and their scaling in high-Reynolds number turbulent boundary layers. J Fluid Mech 585:1–40

    Article  MATH  Google Scholar 

  • Tsukahara T, Seki Y, Kawamura H, Tochio D. (2005) DNS of turbulent channel glow at very flow Reynolds numbers. Proceedings of the Fourth International symposium on turbulence and shear flow phenomena, pp 935–940. http://murasun.me.noda.tus.ac.jp/turbulence/, Accessed 10 Nov 2009

  • Verstappen R (2004) A synthesis of similarity and eddy-viscosity models. In: Friedrich R, Guerts BJ and Métais O (eds) Proceedings of the 5th ERCOFTAC workshop “direct and large-eddy simulation V”, Munich, pp 89–96

  • Wei T, Willmarth WW (1989) Reynolds-number effects on the structure of a turbulent channel flow. J Fluid Mech 204:57–95. http://torroja.dmt.upm.es/ftp/AGARD/chapter5/PCH12/, Accessed 10 Nov 2009

  • Wosnik W, Castillo L, George WK (2000) A theory for turbulent pipe and channel flows. J Fluid Mech 421:115–145

    Article  MATH  Google Scholar 

  • Wu Y, Christensen KT (2006) Population trends of spanwise vortices in wall turbulence. J Fluid Mech 568:55–76

    Article  MATH  Google Scholar 

  • Wu X, Moin P (2008) DNS statistics data of fully developed turbulent pipe flow. J Fluid Mech 608:81–112. http://www.stanford.edu/group/ctr/research_data/pipe/, Accessed 10 Nov 2009

    Google Scholar 

  • Wu X, Moin P (2009) Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J Fluid Mech 630:5–41. http://www.stanford.edu/group/ctr/research_data/zpgfpbl/, Accessed 09 Nov 2009

  • Zanoun ES (2003) Answers to some open questions in wall-bounded laminar and turbulent shear flows. Ph.D. thesis, Lehrstuhl für Strömungsmechanik, Universität Erlangen-Nürnberg

  • Zhao R, Smits AJ (2007) Scaling of the wall-normal turbulence component in high-Reynolds-number pipe flow. J Fluid Mech 576:457–473

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This paper is dedicated to the extensive and distinguished career of our friend and longtime editor of Experiments of Fluids, Professor Donald O. Rockwell. We thank all scientists who supported us with their data. Special thanks go to Professor Peter Bradshaw who provided us with his translation of Genevieve Comte-Bellot’s doctoral thesis. Finally, the authors would like to thank an anonymous reviewer for encouraging us to extend the paper significantly. A shorter conference version of this article was presented at the Sixth International Symposium on Turbulence, Heat and Mass Transfer, September 14–18, 2009, Rome, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Gad-el-Hak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buschmann, M.H., Gad-el-Hak, M. Normal and cross-flow Reynolds stresses: differences between confined and semi-confined flows. Exp Fluids 49, 213–223 (2010). https://doi.org/10.1007/s00348-010-0834-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-010-0834-z

Keywords

Navigation