Skip to main content
Log in

On the precision of optical imaging to study free surface dynamics at high frame rates

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The precision of optical imaging to study free surface dynamics is analyzed. The damping of a liquid bridge free surface oscillation is used to validate this method. Images are acquired with a digital camera at relatively high frame rates and processed by several techniques. Oscillations with amplitudes of about 20 times smaller than the pixel size are measured, which allows one to reach the nanometer scale in the analysis. The experimental results presented in this paper constitute the first quantitative validation of optical imaging to study free surface dynamics at the nanometer scale. As a secondary goal, we propose an image processing technique based on the local thresholding criterion to determine the free surface position with sub-pixel resolution. This yields more precision (less noise) than the standard technique when considering very small oscillations. Further improvement of the results is obtained by a simple smoothing technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Acero FJ, Montanero JM (2005) Influence of isorotation on the linear dynamics of liquid bridges. Phys Fluids 17:078105

    Article  Google Scholar 

  • Anastasiadis SH, Chen JK, Koberstein JT, Siegel AF, Sohn JE, Emerson JA (1987) The determination of interfacial tension by video image processing of pendant fluid drops. J Colloid Interface Sci 184:77–91

    Google Scholar 

  • Baker RJ (2008) CMOS: circuit design, layout, and simulation, revised, second edition. Wiley-IEEE Press, New York

  • Basaran OA (2002) Small-Scale free surface flows with breakup: drop formation and emerging applications. AIChE 48:1842–1848

    Article  Google Scholar 

  • Becker E, Hiller WJ, Kowalewski TA (1991) Experimental and theoretical investigation of large-amplitude oscillations of liquid droplets. J Fluid Mech 231:189–210

    Article  MATH  Google Scholar 

  • Cabezas MG, Bateni A, Montanero JM, Neumann AW (2006) Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces without use of apex coordinates. Langmuir 22:10053–10060

    Article  Google Scholar 

  • Canny JA (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8:679–698

    Article  Google Scholar 

  • Cheng P, Li D, Boruvka L, Rotenberg Y, Neumann AW (1990) Automation of axisymmetric drop shape analysis for measurements of interfacial tensions and contact angles. Colloid Surf 43:151–67

    Article  Google Scholar 

  • Cohen I, Nagel SR (2002) Scaling at the selective withdrawal transition through a tube suspended above the fluid surface. Phys Rev Lett 88:074501

    Article  Google Scholar 

  • Eggers J, Villermaux E (2008) Physics of liquid jets. Rep Prog Phys 71:036601

    Article  Google Scholar 

  • Ferrera C, Montanero JM (2007) Experimental study of small-amplitude lateral vibrations of an axisymmetric liquid bridge. Phys Fluids 19:118103

    Article  Google Scholar 

  • Ferrera C, Cabezas MG, Montanero JM (2006) An experimental analysis of the linear vibration of axisymmetric liquid bridges. Phys Fluids 18:082105

    Article  Google Scholar 

  • Ferrera C, Montanero JM, Mialdun A, Shevtsova V, Cabezas MG (2008) A new experimental technique for measuring the dynamical free surface deformation in liquid bridges due to thermal convection. Meas Sci Tech 19:015410

    Article  Google Scholar 

  • Garstecki P, Stone HA, Whitesides GM (2005) Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions. Phys Rev Lett 94:164501

    Article  Google Scholar 

  • Gonzalez RC, Woods RE (2002) Digital image processing. Prentice-Hall, USA

    Google Scholar 

  • Higuera M, Nicolás JA, Vega JM (1994) Linear oscillations of weakly dissipative axisymmetric liquid bridges. Phys Fluids 6:438–450

    Article  MATH  MathSciNet  Google Scholar 

  • Hoorfar M, Neumann AW (2006) Recent progress in axisymmetric drop shape analysis (ADSA). Adv Colloid Interface Sci 121:25–49

    Article  Google Scholar 

  • Lowry BJ (1996) Pressure and stress measurement via image analysis (P-SIA) of axisymmetric drops and liquid bridges. J Colloid Interface Sci 176:284–297

    Article  Google Scholar 

  • Megias-Alguacil D, Fischer P, Windhab EJ (2006) Determination of the interfacial tension of low density difference liquid-liquid systems containing surfactants by droplet deformation. Chem Eng Sci 61:1386–1394

    Article  Google Scholar 

  • Mollot D, Tsamopoulos J, Chen T, Ashgriz N (1993) Nonlinear dynamics of capillary liquid bridges: experiments. J Fluid Mech 255:411–435

    Article  MathSciNet  Google Scholar 

  • Montanero JM, Ferrera C (2008) A simple model to describe the lateral oscillations of axisymmetric liquid bridges. Phys Fluids 20:022103

    Article  Google Scholar 

  • Montanero JM, Cabezas J, Acero J, Perales JM (2002) Theoretical and experimental analysis of the equilibrium contours of liquid bridges of arbitrary shape. Phys Fluids 14:682–692

    Article  MathSciNet  Google Scholar 

  • Montanero JM, Ferrera C, Shevtsova VM (2008) Experimental study of the free surface deformation due to thermal convection in liquid bridges. Exp Fluids 45:1087–1101

    Article  Google Scholar 

  • Morse SF, Thiessen DB, Marston PL (1996) Capillary bridge mode driven with modulated ultrasonic radiation pressure. Phys Fluids 8:3–5

    Article  Google Scholar 

  • Nicolás JA, Vega JM (2000) Linear oscillations of axisymmetric viscous liquid bridges. Z Angew Math Phys 51:701–731

    Article  MATH  MathSciNet  Google Scholar 

  • Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans SMC 9:62–66

    Google Scholar 

  • Sattler R, Wagner C, Eggers J (2008) Blistering pattern and formation of nanofibers in capillary thinning of polymer solutions. Phys Rev Lett 100:164502

    Article  Google Scholar 

  • Schroll RD, Wunenburger R, Casner A, Zhang WW, Delville J-P (2007) Liquid transport due to light scattering. Phys Rev Lett 98:133601

    Article  Google Scholar 

  • Song B, Springer J (1996) Determination of interfacial tension from the profile of a pendant drop using computer-aided image processing. 2. Experimental. J Colloid Interface Sci 184:77–91

    Google Scholar 

  • Stuckrad B, Hiller WJ, Kowalewski TA (1993) Measurement of dynamic surface tension by the oscillating droplet method. Exp Fluids 15:332–340

    Article  Google Scholar 

  • Tavana H, Neumann AW (2007) Recent progress in the determination of solid surface tensions from contact angles. Adv Colloid Interface Sci 132:1–32

    Article  Google Scholar 

  • Thoroddsen ST, Etoh TG, Takehara K (2008) High-Speed imaging of drops and bubbles. Annu Rev Fluid Mech 40:257–285

    Article  MathSciNet  Google Scholar 

  • Zuo YY, Ding M, Bateni A, Hoorfar H, Neumann AW (2004) Improvement of interfacial tension measurement using a captive bubble in conjunction with axisymmetric drop shape analysis (ADSA). Colloids Surf 62:233–246

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Ministerio de Educación y Ciencia (Spain) through Grant No. DPI2007-63559. Partial support from the Junta de Extremadura through Grant No. GRU07003 is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Montanero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vega, E.J., Montanero, J.M. & Fernández, J. On the precision of optical imaging to study free surface dynamics at high frame rates. Exp Fluids 47, 251–261 (2009). https://doi.org/10.1007/s00348-009-0657-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-009-0657-y

Keywords

Navigation