Skip to main content
Log in

Precise flow rate measurements of natural gas under high pressure with a laser Doppler velocity profile sensor

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This paper reports about the first application of a laser Doppler velocity profile sensor for precise flow rate measurements of natural gas under high pressure. The profile sensor overcomes the limitations of conventional laser Doppler anemometry (LDA) namely the effect of spatial averaging and the effect of fringe spacing variation (virtual turbulence). It uses two superposed, fan-like interference fringe systems to determine the axial position of a tracer particle inside the LDA’s measurement volume. Consequently, a spatial resolution of about 1 μm can be achieved and the effect of virtual turbulence is nearly eliminated. These features predestine the profile sensor for flow rate measurements with high precision. Velocity profile measurements were performed at the German national standard for natural gas, one of the world′s leading test facilities for precision flow rate measurements. As a result, the velocity profile of the nozzle flow could be resolved more precisely than with a conventional LDA. Moreover, the measured turbulence intensity of the core flow was of 0.14% mean value and 0.07% minimum value, which is significantly lower than reference measurements with a conventional LDA. The paper describes the performed measurements, gives a discussion and shows possibilities for improvements. As the main result, the goal of 0.1% flow rate uncertainty seems possible by an application of the profile sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. http://www.pigsar.de

  2. Westerweel J (1997) Fundamentals of digital particle image velocimetry. Meas Sci Technol 8:1379–1392

    Article  Google Scholar 

  3. Kallweit S, Dues M, Müller U, Lederer T, Schroll M (2007) Einsatz der Particle Image Velocimetry zur Untersuchung von Rohrströmungen. 15th conference, Lasermethoden in der Strömungsmesstechnik” of the German Association for Laser Anemometry (GALA), (in German language). 4–6 September 2007, Rostock, Germany, pp 35.1–35.8. ISBN 978-3-86009-007-7

  4. Roehle I, Willert C (2001) Extension of Doppler global velocimetry to periodic flows. Meas Sci Technol 12:420–431

    Article  Google Scholar 

  5. Fischer A, Büttner L, Czarske J, Eggert M, Grosche G, Müller H (2007) Investigation of time-resolved single detector Doppler global velocimetry using sinusoidal laser frequency modulation. Meas Sci Technol 18:2529–2545

    Article  Google Scholar 

  6. Albrecht H, Borys M, Damaschke N, Tropea C (2002) Laser-Doppler and phase-Doppler measurement techniques. Springer, Heidelberg

    Google Scholar 

  7. Wendt G, Mickan B, Kramer R, Dopheide D (1996) Systematic investigation of pipe flows and installation effects using laser Doppler anemometry; Part I: profile measurements downstream of several pipe configurations and flow conditioners. Flow Meas Instrum 7(3/4):141–149

    Article  Google Scholar 

  8. Mickan B, Wendt G, Kramer R, Dopheide D (1996) Systematic investigation of pipe flows and installation effects using laser Doppler anemometry; Part II: the effect of disturbed flow profiles on turbine gas meters—a describing empirical model. Flow Meas Instrum 7(3/4):151–160

    Article  Google Scholar 

  9. Müller H, Strunck V, Mickan B, Kramer R, Dopheide D, Hotze H-J (2003) Optisches Durchflussnormal für HD-Erdgas: Voraussetzungen für einen LDA-Einsatz, 11. In: Conference, Lasermethoden in der Strömungsmeßtechnik of the German Association for Laser Anemometry (GALA), pp 8.1–8.6 (in German language), Braunschweig, Germany, 9–11 September 2003. ISBN 3-00-011903-5

  10. Müller H, Strunck V, Mickan B, Kramer R, Dopheide D (2004) Einsatz der Laser Doppler Anemometrie zur Realisierung eines optischen Durchflussnormals für HD-Erdgas, 12. In: Conference, Lasermethoden in der Strömungsmeßtechnik of the German Association for Laser Anemometry (GALA), pp 58.1–58.6. Karlsruhe, Germany, 7–9 September 2004. ISBN 3-9805613-1-3

  11. Durst F, Fischer M, Jovanović J, Kikura H (1998) Methods to set up and investigate low Reynolds number, fully developed plane channel flows. J Fluids Eng 120:496–503

    Article  Google Scholar 

  12. Czarske J, Büttner L, Razik T, Müller H (2002) Boundary layer velocity measurements by a laser Doppler profile sensor with micrometre spatial resolution. Meas Sci Techn 13(12):1979–1989

    Article  Google Scholar 

  13. Shirai K, Pfister T, Büttner L, Czarske J, Müller H, Becker S, Lienhart H, Durst F (2006) Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne laser-Doppler velocity-profile sensor. Exp Fluids 40(3):473–481

    Article  Google Scholar 

  14. Büttner L, Voigt A, Bayer C, Czarske J (2006) Three Component Flow Imaging by an Extended Laser Doppler Sensor. XVIII IMEKO World Congress, paper TC9-7, Rio de Janeiro, Brasil, 17–22 September. pp 1–6

  15. Pfister T, Büttner L, Czarske J, Krain H, Schodl R (2006) Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor. Meas Sci Technol 17:1693–1705

    Article  Google Scholar 

  16. Pfister T, Büttner L, Shirai K, Czarske J (2005) Monochromatic heterodyne fiber-optic profile sensor for spatially resolved velocity measurements with frequency division multiplexing. Appl Optics 44(13):S2501–S2510

    Article  Google Scholar 

  17. Michalke A (1965) On spatially growing disturbances in an inviscid shear layer. J Fluid Mech 23:521–524

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank Katsuaki Shirai for fruitful discussions, Andreas Woloschyn and Georgi Paschew for their work at the sensor construction. The support of the E.ON staff at the test facility is greatly acknowledged. T. Pfister and P. Pfeiffer are thanked for developing the FDM part. The development of the profile sensor was partially funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, FKZ: CZ55/18-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Büttner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Büttner, L., Bayer, C., Voigt, A. et al. Precise flow rate measurements of natural gas under high pressure with a laser Doppler velocity profile sensor. Exp Fluids 45, 1103–1115 (2008). https://doi.org/10.1007/s00348-008-0530-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-008-0530-4

Keywords

Navigation