Skip to main content
Log in

Experimental study of heat flux in mixed convective flow over solid waves

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

In this experimental study, we address transport processes in a mixed convective flow over a heated wavy surface. Therefore, we combine digital particle image velocimetry (DPIV) and two-color planar laser induced fluorescence (PLIF) to simultaneously measure the velocity and temperature field. For this, we propose to use the dye combination Rhodamine B and Rhodamine 110, both excited with the Nd:YAG laser also used for the PIV measurements. We investigate the influence of mixed convection over a wavy surface on the velocity field, turbulence statistics, the temperature field and the heat flux. By computing these quantities we find a correlation between the maximum in the Reynolds stress profiles and the components of the heat flux vector, thus regions of maximum momentum and scalar transport coincide. In addition, we apply a proper orthogonal decomposition (POD) to extract the most dominant flow structures in a measurement plane above the wavy surface. This first POD mode is identified as streamwise-oriented, counter-rotating vortices whose spanwise scaling is also correlated with the maximum of heat flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

a :

half-amplitude of the wave profile

B :

channel width

g :

acceleration due to gravity

Gr H :

Grashof number

H :

full channel height

\({\dot{q}}\) :

heat flux

Re H :

Reynolds number

t :

time

T :

temperature

u,v,w :

components of the instantaneous fluid velocity

U B :

bulk velocity (channel flow)

x,y,z :

Cartesian coordinates

X :

spatiotemporal set of data

y w :

profile of the wavy bottom wall

α:

amplitude-to-wavelength ratio, 2a

β:

volumetric thermal expansion coefficient

λ i :

eigenvalue of POD mode i

Λ:

wavelength of the sinusoidal profile at the bottom wall

ν:

kinematic viscosity

Π i :

eigenfunction of POD mode i

CCD:

charge coupled device

DPIV:

digital particle image velocimetry

FOV:

field of view

Nd:YAG:

neodymium:yttrium aluminium garnet (Y3Al5O12) crystal

PLIF:

planar laser-induced fluorescence

PVC:

poly vinyl chloride

B :

bulk quantity

H :

channel height (used as length scale)

References

  • Adrian RJ (1991) Particle-imaging techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23:261–304

    Google Scholar 

  • Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25:539–575

    Article  MathSciNet  Google Scholar 

  • Brooke JW, Hanratty TJ (1993) Origin of turbulence-producing eddies in a channel flow. Phys Fluids A5(4):1011–1022

    Article  MATH  Google Scholar 

  • Bruchhausen M, Guillard F, Lemoine F (2005) Instantaneous measurement of two-dimensional temperature distributions by means of two-color planar laser induced fluorescence (PLIF). Exp Fluids 38:123–131

    Article  Google Scholar 

  • Cherukat P, Na Y, Hanratty TJ, McLaughlin JB (1998) Direct numerical simulation of a fully developed turbulent flow over a wavy wall. Theor Comp Fluid Dyn 11:109–134

    Article  MATH  Google Scholar 

  • Coolen MCJ, Kieft RN, Rindt CCM, van Steenhoven AA (1999) Application of 2D-LIF temperature measurements in water using a Nd:YAG laser. Exp Fluids 27:420–426

    Article  Google Scholar 

  • Dabiri D, Gharib M (1991) Digital particle image thermometry: the method and implementation. Exp Fluids 11:77–86

    Article  Google Scholar 

  • Dellil AZ, Azzi A, Jubran BA (2004) Turbulent flow and convective heat transfer in a wavy wall channel. Heat Mass Transfer 40:793–799

    Article  Google Scholar 

  • Günther A (2001) Large-scale structures in Rayleigh–Bénard convection and flow over waves. PhD thesis, ETH Zürich, Switzerland

  • Günther A, Rudolf von Rohr P (2003) Large-scale structures in a developed flow over a wavy wall. J Fluid Mech 478:257–285

    Article  MathSciNet  MATH  Google Scholar 

  • Henn DS, Sykes RI (1999) Large-eddy simulation of flow over wavy surfaces. J Fluid Mech 383:75–112

    Article  MATH  Google Scholar 

  • Incropera FP, DeWitt DP (2002) Fundamentals of heat and mass transfer. Wiley, London

    Google Scholar 

  • Karasso PS, Mungal MG (1997) PLIF measurements in aqueous flows using the Nd:YAG laser. Exp Fluids 23:382–387

    Article  Google Scholar 

  • Kruse N (2005) Isothermal and non-isothermal turbulent flow over solid waves. PhD thesis, ETH Zurich, Switzerland, http://e-collection.ethbib.ethz.ch/show?type=diss&nr= 16031

  • Kruse N, Rudolf von Rohr P (2006) Structure of turbulent heat flux in a flow over a heated wavy wall. Int J Heat Mass Transfer 49(19–20):3514–3529

    Article  Google Scholar 

  • Kruse N, Günther A, Rudolf von Rohr P (2003) Dynamics of large-scale structures in turbulent flow over a wavy wall. J Fluid Mech 485:87–96

    Article  MathSciNet  MATH  Google Scholar 

  • Kruse N, Kuhn S, Rudolf von Rohr P (2006) Wavy wall effects on turbulence production and large-scale modes. J Turbulence 7(31):1–24

    Article  Google Scholar 

  • Kuhn S, Wagner C, Rudolf von Rohr P (2007) Influence of wavy surfaces on coherent structures in a turbulent flow. Exp Fluids 43:251–259

    Article  Google Scholar 

  • Liu Z, Adrian RJ, Hanratty TJ (2001) Large-scale modes of turbulent channel flow: transport and structure. J Fluid Mech 448:53–80

    Article  MATH  Google Scholar 

  • Maughan JR, Incropera FP (1989) Regions of heat transfer enhancement for laminar mixed convection in a parallel plate channel. Int J Heat Mass Transfer 33:555–570

    Article  Google Scholar 

  • Metwally HM, Manglik RM (2004) Enhanced heat transfer due to curvature-induced lateral vortices in laminar flows in sinusoidal corrugated-plate channels. Int J Heat Mass Transfer 47:2283–2292

    Article  Google Scholar 

  • Osborne DG, Incropera FP (1985a) Experimental study of mixed convection heat transfer for transitional and turbulent flow between horizontal, parallel plates. Int J Heat Mass Transfer 28(7):1337–1344

    Article  Google Scholar 

  • Osborne DG, Incropera FP (1985b) Laminar, mixed convection heat transfer for flow between horizontal plates with asymmetric heating. Int J Heat Mass Transfer 28:207–217

    Article  Google Scholar 

  • Raffel M, Willert C, Kompenhans J (1998) Particle Image Velocimetry. A practical guide. Springer, Heidelberg

    Google Scholar 

  • Rush TA, Newell TA, Jacobi AM (1999) An experimental study of flow and heat transfer in sinusoidal wavy passages. Int J Heat Mass Transfer 42:1541–1553

    Article  Google Scholar 

  • Sakakibara J, Adrian RJ (1999) Whole field measurements of temperature in water using two-color laser-induced fluorescence. Exp Fluids 26:7–15

    Article  Google Scholar 

  • Sakakibara J, Adrian RJ (2004) Measurement of temperature field of a Rayleigh–Bénard convection using two-color laser-induced fluorescence. Exp Fluids 37:331–340

    Article  Google Scholar 

  • Scarano F (2002) Iterative image deformation methods in PIV. Meas Sci Technol 13:R1–R19

    Article  Google Scholar 

  • Scarano F, Riethmuller ML (2000) Advances in iterative multigrid PIV image processing. Exp Fluids 29:S51–S60

    Article  Google Scholar 

  • Sirovich L (1987) Turbulence and the dynamics of coherent structures. Part I. Coherent structures. Quart Appl Math XLV:561–571

    MathSciNet  Google Scholar 

  • Wagner C, Kuhn S, Rudolf von Rohr P (2007) Scalar transport from a point source in flows over wavy walls. Exp Fluids 43:261–271

    Article  Google Scholar 

  • Westerweel J (1997) Fundamentals of digital particle image velocimetry. Meas Sci Technol 8:1379–1392

    Article  Google Scholar 

  • Yu CH, Chang MY, Huang CC, Lin TF (1997a) Unsteady vortex roll structures in a mixed convective air flow through a horizontal plane channel: a numerical study. Int J Heat Mass Transfer 40(3):505–518

    Article  MATH  Google Scholar 

  • Yu CH, Chang MY, Lin TF (1997b) Structures of moving transverse and mixed rolls in mixed convection of air in a horizontal plane channel. Int J Heat Mass Transfer 40(2):333–346

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the Swiss National Science Foundation (SNF). Measurement technology is partially provided by ILA GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Rudolf von Rohr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhn, S., Rudolf von Rohr, P. Experimental study of heat flux in mixed convective flow over solid waves. Exp Fluids 44, 973–984 (2008). https://doi.org/10.1007/s00348-007-0456-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-007-0456-2

Keywords

Navigation