Skip to main content
Log in

PIV analysis of near-wake behind a sphere at a subcritical Reynolds number

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The vortical structure of near-wake behind a sphere is investigated using a PIV technique in a circulating water channel at Re = 11,000. The measured velocity fields show a detailed vortical structure in the recirculation region such as recirculation vortices, reversed velocity zone, and out-of-plane vorticity distribution. The vorticity distribution of the sphere wake shows waviness in cross-sectional planes. The time-averaged turbulent structures are consistent with the visualized flow showing the onset of shear layer instability. The spatial distributions of turbulent intensities provide turbulent statistics for validating numerical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

U o :

free stream velocity

d :

sphere diameter

Re :

Reynolds number \( (U_{o} \cdot d/\nu) \)

V :

mean velocity component

V′ :

fluctuation velocity component

ω :

vorticity

(x, y, z):

Cartesian coordinate directions

\( {{\sqrt {\overline{{V^{{'2}}_{x} }} } }} \mathord{\left/ {\vphantom {{{\sqrt {\overline{{V^{{'2}}_{x} }} } }} {U_{o} }}} \right. \kern-\nulldelimiterspace} {U_{o} } \) :

turbulence intensity of V x

\( {{\sqrt {\overline{{V^{{'2}}_{y} }} } }} \mathord{\left/ {\vphantom {{{\sqrt {\overline{{V^{{'2}}_{y} }} } }} {U_{o} }}} \right. \kern-\nulldelimiterspace} {U_{o} } \) :

turbulence intensity of V y

\( {{\sqrt {\overline{{V^{{'2}}_{z} }} } }} \mathord{\left/ {\vphantom {{{\sqrt {\overline{{V^{{'2}}_{z} }} } }} {U_{o} }}} \right. \kern-\nulldelimiterspace} {U_{o} } \) :

turbulence intensity of V z

References

  • Achebach E (1972) Experiments on the flow past spheres at very high Reynolds numbers. J Fluid Mech 54(3):565–575

    Article  Google Scholar 

  • Achebach E (1974) Vortex shedding from spheres. J Fluid Mech 62(2):209–221

    Article  Google Scholar 

  • Cannon S, Champagne F, Glezer A (1993) Observations of large-scale structures in wakes behind axisymmetric bodies. Exp Fluids 14(6):447–450

    Article  Google Scholar 

  • Constantinescu GS, Squires KD (2003) LES and DES investigation of turbulent flow over a sphere at Re = 10,000. Flow Turbulence Combust 70:267–298

    Article  MATH  Google Scholar 

  • Constantinescu GS, Squires KD (2004) Numerical investigations of flow over a sphere in the subcritical and supercritical regimes. Phys Fluids 16(5):1449–1466

    Article  Google Scholar 

  • Coleman H, Steele WG (2001) Experimentation and uncertainty analysis for engineers. Wiley, New York, pp 83–132

    Google Scholar 

  • Doh DH, Hwang TG, Saga T (2004) 3D-PTV measurements of the wake of a sphere. Meas Sci Technol 15:1059–1066

    Article  Google Scholar 

  • Hadzic I, Bakić V, Perić M, Sajn V, Kosel F (2002) Experimental and numerical studies of flow around sphere at sub-critical Reynolds number. Eng Turbulence Model Exp 5:667–676

    Google Scholar 

  • Johnson TA, Patel VC (1990) Flow past a sphere up to a Reynolds number of 300. J Fluid Mech 378:19–70

    Article  Google Scholar 

  • Kim HJ, Durbin PA (1988) Observations of the frequencies in a sphere wake and of drag increase by acoustic excitation. Phys Fluids 31(11):3260–3265

    Article  Google Scholar 

  • Kiya M, Ishikawa H, Sakamoto H (2001) Near-wake instabilities and vortex structures of three-dimensional bluff bodies: a review. J Wind Eng Ind Aerodyn 89:1219–1232

    Article  Google Scholar 

  • Leder A, Geropp D (1993) The unsteady flow structure in the wake of the sphere. SPIE 2052:119–126

    Article  Google Scholar 

  • Lee SJ, Lee SH (1999) Synchronized smoke-wire technique for flow visualization of turbulent flows. J Flow Vis Image Proc 6:65–78

    MATH  Google Scholar 

  • Leweke T, Provansal M, Ormières D, Lebescond R (1999) Vortex dynamics in the wake of a sphere. Phys Fluid 11(9):S12

    Google Scholar 

  • Nakamura I (1976) Steady wake behind a sphere. Phys Fluids 19(1):5–8

    Article  Google Scholar 

  • Raffel M, Willert CE, Kompenhans J (1998) Particle image velocimetry. Springer, Göttingen, pp 134–146

    Google Scholar 

  • Sakamoto H, Haniu H (1990) A study on vortex shedding from spheres in a uniform flow. J Fluids Eng 112:386–392

    Article  Google Scholar 

  • Sakamoto H, Haniu H (1995) The formation mechanism and shedding frequency of vortices from a sphere in uniform shear flow. J Fluid Mech 287:151–171

    Article  Google Scholar 

  • Schmid M, Bakic V, Peric M (2002) Vortex shedding in the turbulent wake of a sphere at subcritical Reynolds number. Results and review workshop on high performance computing in science and engineering, pp 309–316

  • Suryanarayana GK, Prabhu A (2000) Effect of natural ventilation on the boundary layer separation and near-wake vortex shedding characteristics of a sphere. Exp Fluids 29(7):582–591

    Article  Google Scholar 

  • Taneda S (1956) Experimental investigation of the wake behind a sphere at low Reynolds number. J Phys Soc Japan 11(10):1104–1108

    Google Scholar 

  • Taneda S (1978) Visual observations of the flow past a sphere at Reynolds numbers between 104 and 106. J Fluid Mech 85(1):187–192

    Article  Google Scholar 

  • Werlé H (1980) ONERA photograph In: An album of fluid motion (assembled by Dyke V). Parabolic Press, Stanford, pp 32–35

  • Wu JS, Faeth GM (1993) Sphere wakes in still surroundings at intermediate Reynolds numbers. AIAA J 31(8):1448–1455

    Google Scholar 

  • Yun G, Kim D, Choi H (2006) Vortical structures behind a sphere at subcritical Reynolds numbers. Phys Fluids 18(1):015102

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Science and Engineering Foundation (KOSEF) through the National Research Lab. Program funded by the Ministry of Science and Technology (No. M10600000276-06J0000-27610).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Joon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, Y.I., Lee, S.J. PIV analysis of near-wake behind a sphere at a subcritical Reynolds number. Exp Fluids 44, 905–914 (2008). https://doi.org/10.1007/s00348-007-0448-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-007-0448-2

Keywords

Navigation