Skip to main content
Log in

Droplet streams for serial crystallography of proteins

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Serial diffraction of proteins requires an injection method to deliver analyte molecules—preferably uncharged, fully hydrated, spatially oriented, and with high flux—into a focused probe beam of electrons or X-rays that is only a few tens of microns in diameter. This work examines conventional Rayleigh sources and electrospray-assisted Rayleigh sources as to their suitability for this task. A comparison is made and conclusions drawn on the basis of time-resolved optical images of the droplet streams produced by these sources. Straight-line periodic streams of monodisperse droplets were generated with both sources, achieving droplet diameters of 4 and 1 micrometer, respectively, for the conventional and electrospray-assisted versions. Shrinkage of droplets by evaporation is discussed and quantified. It is shown experimentally that proteins pass undamaged through a conventional Rayleigh droplet source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aksyonov SA, Williams P (2001) Impact desolvation of electrosprayed microdroplets—a new ionization method for mass spectrometry of large biomolecules. Rapid Commun Mass Spectrom 15:2001–2006

    Article  Google Scholar 

  • Angert I, Burmester C, Dinges C, Rose H, Schröder RR (1996) Elastic and inelastic scattering cross-sections of amorphous layers of carbon and vitrified ice. Ultramicroscopy 63:181–192

    Article  Google Scholar 

  • Arakawa ET, Tuminello PS, Khare BN, Milham ME (1997) Optical properties of horseradish peroxidase from 0.13 to 2.5 mu m. Biospectroscopy 3:73–80

    Article  Google Scholar 

  • Arakawa ET, Tuminello PS, Khare BN, Milham ME (2001) Optical properties of ovalbumin in 0.130–2.50 mu m spectral region. Biopolymers 62:122–128

    Article  Google Scholar 

  • Bartell LS, Huang JF (1994) Supercooling of Water Below the Anomalous Range near 226 K. J Phys Chem 98:7455–7457

    Article  Google Scholar 

  • Benignos JAC (2005) Numerical simulation of a single emitter colloid thruster in pure droplet cone-jet mode. Ph.D. thesis, Department of Mechanical Engineering, MIT

  • Berglund M, Rymell L, Hertz HM (1996) Ultraviolet prepulse for enhanced X-ray emission and brightness from droplet-target laser plasmas. Appl Phys Lett 69:1683–1685

    Article  Google Scholar 

  • Berglund M, Rymell L, Hertz HM, Wilhein T (1998) Cryogenic liquid-jet target for debris-free laser-plasma soft X-ray generation. Rev Sci Instrum 69:2361–2364

    Article  Google Scholar 

  • Bras W, Diakun GP, Diaz JF, Maret G, Kramer H, Bordas J, Medrano FJ (1998) The susceptibility of pure tubulin to high magnetic fields: a magnetic birefringence and X-ray fiber diffraction study. Biophys J 74:1509–1521

    Article  Google Scholar 

  • Bruins AP, Covey TR, Henion JD (1987) Ion spray interface for combined liquid chromatography/atmospheric pressure ionization mass-spectrometry. Anal Chem 59:2642–2646

    Article  Google Scholar 

  • Cech NB, Enke CG (2001) Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom Rev 20:362–387

    Article  Google Scholar 

  • Chen DR, Pui DYH, Kaufman SL (1995) Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 mu-m diameter range. J Aerosol Sci 26:963–977

    Article  Google Scholar 

  • Chudobiak MJ (1995) High-speed, medium voltage pulse-amplifier for diode reverse transient measurements. Rev Sci Instrum 66:5352–5354

    Article  Google Scholar 

  • Cloupeau M, Prunet-Foch B (1994) Electrohydrodynamic spraying functioning modes—a critical-review. J Aerosol Sci 25:1021–1036

    Article  Google Scholar 

  • Cole RB (1997) Electrospray ionization mass spectrometry: fundamentals, instrumentation, and applications. Wiley, New York

    Google Scholar 

  • Deponte D, Weierstall U, Starodub D, Warner J, Spence JCH, Doak RB (2007) Gas dynamic virtual nozzle for generation of microscopic droplet streams. submitted to J Appl Phys

  • Dole M, Mack LL, Hines RL (1968) Molecular beams of macroions. J Chem Phys 49:2240–2249

    Article  Google Scholar 

  • Dunn RV, Daniel RM (2004) The use of gas-phase substrates to study enzyme catalysis at low hydration. Philos Trans R Soc Lond B Biol Sci 359:1309–1320

    Article  Google Scholar 

  • EPA: atmospheric concentrations of particulate matter of 10 micron or less (PM-10) and of 2.5 microns or less (PM 2.5) are available from the EPA. http://www.epa.gov/air/airtrends/aqtrnd95/pm10.html

  • Faubel M, Kisters T (1989) Non-equilibrium molecular evaporation of carboxylic-acid dimers. Nature 339:527–529

    Article  Google Scholar 

  • Faubel M, Schlemmer S, Toennies JP (1988) A molecular-beam study of the evaporation of water from a liquid jet. Z Phys D-At Mol and Clus 10:269–277

    Article  Google Scholar 

  • Faubel M, Steiner B (1992) Strong bipolar electrokinetic charging of thin liquid jets emerging from 10 mu-m ptir nozzles. Ber Der Bunsen-Gesellschaft-Phys Chem Chem Phys 96:1167–1172

    Google Scholar 

  • Faubel M, Steiner B, Toennies JP (1998) Measurement of He I photoelectron spectra of liquid water, formamide and ethylene glycol in fast-flowing microjets. J Electron Spectrosc Rel Phenom 95:159–169

    Article  Google Scholar 

  • Faubel M, Steiner B, Toennies JP (1997a) Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets. J Chem Phys 106:9013–9031

    Article  Google Scholar 

  • Faubel M, Steiner B, Toennies JP (1997b) The static and dynamic surface composition of formamide–benzyl alcohol and water–formamide liquid mixtures studied by means of HeI photoelectron spectroscopy. Mol Phys 90:327–344

    Article  Google Scholar 

  • Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass-spectrometry of large biomolecules. Science 246:64–71

    Article  Google Scholar 

  • Fienup JR (1982) Phase retrieval algorithms—a comparison. Applied Optics 21:2758–2769

    Google Scholar 

  • Fienup JR (1987) Reconstruction of a complex-valued object from the modulus of its fourier-transform using a support constraint. J Opt Soc Am A Opt Image Sci Vis 4:118–123

    Google Scholar 

  • Foster CA, Hendricks CD, Turnbull RJ (1975) Hollow hydrogen spheres for laser-fusion targets. Appl Phys Lett 26:580–581

    Article  Google Scholar 

  • Foster CA, Kim K, Turnbull RJ, Hendricks CD (1977) Apparatus for producing uniform solid spheres of hydrogen. Rev Sci Instrum 48:625–631

    Article  Google Scholar 

  • Frank J (2002) Single-particle imaging of macromolecules by cryo-electron microscopy. Annu Rev Biophys and Biomol Struct 31:303–319

    Article  Google Scholar 

  • French JB, Etkin B, Jong R (1994) Monodisperse dried microparticulate injector for analytical instrumentation. Anal Chem 66:685–691

    Article  Google Scholar 

  • Frohn A, Roth N (2000) Dynamics of droplets. Springer, Berlin

    MATH  Google Scholar 

  • Fromme P, Yu HQ, DeRuyter YS, Jolley C, Chauhan DK, Melkozernov A, Grotjohann I (2006) Structure of photosystems I and II. C R Chimie 9:188–200

    Google Scholar 

  • Fuerstenau SD, Benner WH, Thomas JJ, Brugidou C, Bothner B, Siuzdak G (2001) Mass spectrometry of an intact virus. Angewandte Chemie-International Edition 40:542–544

    Google Scholar 

  • Gerchberg RW, Saxton WO (1971) Phase determination from image and diffraction plane pictures in electron-microscope. Optik 34:275–277

    Google Scholar 

  • Goff JA, Gratch S (1946) 52nd annual meeting of the American society of heating and ventilating engineers pp 95–122 (New York)

  • Grisenti RE, Fraga RAC, Petridis N, Dorner R, Deppe J (2006) Cryogenic microjet for exploration of superfluidity in highly supercooled molecular hydrogen. Europhys Lett 73:540–546

    Article  Google Scholar 

  • Hager DB, Dovichi NJ (1994) Behavior of microscopic liquid droplets near a strong electrostatic-field—droplet electrospray. Anal Chem 66:1593–1594

    Article  Google Scholar 

  • Hager DB, Dovichi NJ, Klassen J, Kebarle P (1994) Droplet electrospray mass-spectrometry. Anal Chem 66:3944–3949

    Article  Google Scholar 

  • Hanson E (ed) (1999) Recent progress in ink jet technologies II. Society for imaging science and technology springfield, VA

    Google Scholar 

  • Hemberg O, Hansson BAM, Berglund M, Hertz HM (2000) Stability of droplet-target laser-plasma soft X-ray sources. J Appl Phys 88:5421–5425

    Article  Google Scholar 

  • Henderson R (2004) Realizing the potential of electron cryo-microscopy. Q Rev Biophys 37:3–13

    Article  Google Scholar 

  • Holstein WL, Hayes LJ, Robinson EMC, Laurence GS, Buntine MA (1999) Aspects of electrokinetic charging in liquid microjets. J Phys Chem B 103:3035–3042

    Article  Google Scholar 

  • Howard EI, Cachau RE (2002) Ink-jet printer heads for ultra-small-drop protein crystallography. Biotechniques 33:1302

    Google Scholar 

  • Iribarne JV, Thomson BA (1976) Evaporation of small ions from charged droplets. J Chem Phys 64:2287–2294

    Article  Google Scholar 

  • Keller W, Morgner H, Muller WA (1986) Probing the outermost layer of a free liquid surface—electron-spectroscopy of formamide under He(2(3)S) impact. Mol Phys 57:623–636

    Article  Google Scholar 

  • Koch MHJ, Dorrington E, Klaring R, Michon AM, Sayers Z, Marquet R, Houssier C (1988) Electric-field X-ray-scattering measurements on tobacco mosaic-virus. Science 240:194–196

    Article  Google Scholar 

  • Kondow T, Mafune F (2000) Structures and dynamics of molecules on liquid beam surfaces. Annu Rev Phys Chem 51:731–761

    Article  Google Scholar 

  • Kozhenkov VI, Kirsh AA, Fuks NA (1974) Investigation of monodisperse aerosol formation by electrostatic atomization of liquids. Colloid J USSR 36:1061–1063

    Google Scholar 

  • Kurkal V, Daniel RM, Finney JL, Tehei M, Dunn RV, Smith JC (2005) Enzyme activity and flexibility at very low hydration. Biophys J 89:1282–1287

    Article  Google Scholar 

  • LCLS http://www-ssrl.slac.stanford.edu/lcls/

  • Loo JA (1997) Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom Rev 16:1–23

    Article  Google Scholar 

  • Mafune F, Takeda Y, Nagata T, Kondow T (1992) Formation and ejection of cluster ions from a liquid beam of aniline ethanol solution by laser photoionization. Chem Phys Lett 199:615–620

    Article  Google Scholar 

  • Malmqvist L, Rymell L, Hertz HM (1996) Droplet-target laser-plasma source for proximity X-ray lithography. Appl Phys Lett 68:2627–2629

    Article  Google Scholar 

  • Middleman S (1998) An introduction to fluid dynamics. Wiley, New York

    Google Scholar 

  • Newobjective http://www.newobjective.com/products/tips_index.html

  • Nishioka GM, Markey AA, Holloway CK (2004) Protein damage in drop-on-demand printers. J Am Chem Soc 126:16320–16321

    Article  Google Scholar 

  • Ohnesorge Wv (1936) Die bildung von tropfen an düsen und die auflösung flüssiger strahlen. Z Angew Mathematik und Mechanik 16:355–358

    Google Scholar 

  • Okamoto T, Suzuki T, Yamamoto N (2000) Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat Biotechnol 18:438–441

    Article  Google Scholar 

  • Oomens J, Polfer N, Moore DT, van der Meer L, Marshall AG, Eyler JR, Meijer G, von Helden G (2005) Charge-state resolved mid-infrared spectroscopy of a gas-phase protein. Phys Chem Chem Phys 7:1345–1348

    Article  Google Scholar 

  • Rayleigh L (1878) On the instability of jets. Proc London Math Soc 10:4–13

    Article  Google Scholar 

  • Ruotolo BT, Giles K, Campuzano I, Sandercock AM, Bateman RH, Robinson CV (2005) Evidence for macromolecular protein rings in the absence of bulk water. Science 310:1658–1661

    Article  Google Scholar 

  • Rymell L, Berglund M, Hertz HM (1995) Debris-Free Single-Line Laser-Plasma X-Ray Source for Microscopy. Appl Phys Lett 66:2625–2627

    Article  Google Scholar 

  • Rymell L, Hertz HM (1995) Debris elimination in a droplet-target laser-plasma soft-X-ray source. Rev Sci Instrum 66:4916–4920

    Article  Google Scholar 

  • Rymell L, Hertz HM (1993) Droplet target for low-debris laser-plasma soft-X-ray generation. Opt Commun 103:105–110

    Article  Google Scholar 

  • Siegbahn H, Siegbahn K (1973) ESCA applied to liquids. J Electron Spectr Rel Phenom 2:319–325

    Article  Google Scholar 

  • Simonson T (2003) Electrostatics and dynamics of proteins. Reports on Progress in Phys 66:737–787

    Article  Google Scholar 

  • Spence JCH, Doak RB (2004) Single molecule diffraction. Phys Rev Lett 92:198102

    Article  Google Scholar 

  • Starodub D, Doak RB, Schmidt K, Weierstall U, Wu JS, Spence JCH, Howells M, Marcus M, Shapiro D, Barty A, Chapman HN (2005) Damped and thermal motion of laser-aligned hydrated macromolecule beams for diffraction. J Chem Phys 123

  • Sutter http://www.sutter.com/products/product_sheets/p2000.html

  • Taylor G (1964) Disintegration of water drops in electric field. Proc R Soc Lond A-Math Phys Sci 280:383–397

    MATH  Google Scholar 

  • Trostell B (1995) Vacuum injection of hydrogen micro-sphere beams. Nucl Instrum Methods Phys Res A 362:41–52

    Article  Google Scholar 

  • Wilm M, Mann M (1996) Analytical properties of the nanoelectrospray ion source. Anal Chem 68:1–8

    Article  Google Scholar 

  • Wilson KR, Rude BS, Smith J, Cappa C, Co DT, Schaller RD, Larsson M, Catalano T, Saykally RJ (2004) Investigation of volatile liquid surfaces by synchrotron X-ray spectroscopy of liquid microjets. Rev Sci Instrum 75:725–736

    Article  Google Scholar 

  • Wu JS, Leinenweber K, Spence JCH, O’Keeffe M (2006) Ab initio phasing of X-ray powder diffraction patterns by charge flipping. Nat Mater 5:647–652

    Article  Google Scholar 

  • XCOMhttp://www.physics.nist.gov/PhysRefData/Xcom/Text/XCOM.html

  • XFEL http://www.xfel.net/en/index.html

Download references

Acknowledgments

This work was supported by NSF award IDBR 0555845 and ARO award DAAD190010500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Weierstall.

Appendix: Coherence and alignment

Appendix: Coherence and alignment

Ideally, the dilution of the analyte solution is set to deliver no more than a single protein per microdroplet. This is not a major constraint, however. Provided the coherence patch of the probe beam encompasses at most one molecule, the diffraction pattern is a simple sum of intensities from the individual molecules and the pattern from N molecules is identical to that of a single molecule, just scaled up by a factor of N. If the coherence patch encompasses two or more molecules, then intra-particle interference does result and diffraction amplitudes add rather than intensities. However, this interference either averages to zero over the exposure (multiple proteins at random spacing within one or more droplets) or can be separated out by virtue of a disparate length scale (exactly-spaced proteins in separate droplets of a perfectly periodic droplet stream). Coherence can often be traded for flux in an X-ray source, and so the coherence patch for a given experiment should be set to just larger than the protein size in order to work at the highest possible flux.

At the near-IR laser frequency to be used for molecular alignment, biomolecules can be treated as approximately homogeneous bodies with dielectric constant of 2–2.3 (Arakawa et al. 1997, 2001) This being the case, the induced dipole moment of a protein is mostly due to the shape anisotropy of the molecule. At low frequency, polarization is due to the re-orientation of individual polar groups within the protein. Given its homogeneity and low dielectric constant, the interior contributes little. In contrast, a large polarization arises on the highly inhomogeneous surface due to the side-chain re-orientation (Simonson 2003). In a DC E-field, permanent electric dipole moments (which cancel out in an AC laser field) can also produce large alignment forces. Thus strong electrostatic (Koch et al. 1988) and magnetic fields (Bras et al. 1998) might also be used alone or in combination with CW laser fields to promote alignment. Flow alignment due to hydrodynamic shear is also possible, as used in studies of electric birefringence, and this may well be expected in the Poiseuille-like flow of droplet stream nozzles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weierstall, U., Doak, R.B., Spence, J.C.H. et al. Droplet streams for serial crystallography of proteins. Exp Fluids 44, 675–689 (2008). https://doi.org/10.1007/s00348-007-0426-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-007-0426-8

Keywords

Navigation