Skip to main content
Log in

A further assessment of interpolation schemes for window deformation in PIV

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

We have evaluated the performances of the following seven interpolation schemes used for window deformation in particle image velocimetry (PIV): the linear, quadratic, B-spline, cubic, sinc, Lagrange, and Gaussian interpolations. Artificially generated images comprised particles of diameter in a range 1.1 ≤ d p ≤ 10.0 pixel were investigated. Three particle diameters were selected for detailed evaluation: d p = 2.2, 3.3, and 4.4 pixel with a constant particle concentration 0.02 particle/pixel2. Two flow patterns were considered: uniform and shear flow. The mean and random errors, and the computation times of the interpolation schemes were determined and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

a :

parameter in the cubic interpolation

C :

particle density (particle/pixel2)

d :

arbitrary value between 0 and 1 (pixel)

d p :

particle diameter (pixel)

f :

spatial frequency (pixel−1)

f(x,y):

intensity data interpolated from the original image

f 1 (x,y):

intensity data of the first image

f 2 (x,y):

intensity data of the second image

G 0 (x,b):

Gaussian function

G P (x,b):

Pth derivative of the Gaussian function

h(x):

one-dimensional impulse response function of a reconstruction filter

h 2D (x,y):

two-dimensional impulse response function of a reconstruction filter

H(f):

Fourier transform of the one-dimensional impulse response function of a reconstruction filter

i :

integer horizontal position in the image (pixel)

j :

integer vertical position in the image (pixel)

k :

iteration number

M :

total number of vectors

N :

kernel size of an interpolation (pixel)

U :

horizontal displacement in the uniform flow (pixel)

\(\bar{U}\) :

mean of the measured displacements in the uniform flow (pixel)

U exact :

exact displacement on the image for the uniform flow (pixel)

U c :

horizontal displacement in the shear flow (pixel)

\(\bar{U}_{c}\) :

mean of the measured displacements in the shear flow (pixel)

U c,exact :

exact displacement on the image for the shear flow (pixel)

\(\vec{V}(i,j)\) :

velocity vector at the (i,j) location (pixel, pixel)

W :

size of a square interrogation window (pixel)

γ2 :

parameter used in the second-order Gaussian interpolation

γ6 :

parameter used in the sixth-order Gaussian interpolation

Δx :

horizontal value to be determined through cross-correlation (pixel)

Δy :

vertical value to be determined through cross-correlation (pixel)

σ:

random error (pixel)

ω:

shear rate (pixel/pixel)

ω (i,j):

two-dimentional Gaussian windowing mask

References

  • Appledorn CR (1996) A new approach to the interpolation of sampled data. IEEE Trans Med Imaging 15(3):369–376

    Article  Google Scholar 

  • Astarita T, Cardone G (2005) Analysis of interpolation schemes for image deformation methods in PIV. Exp Fluids 38(2):233–243

    Article  Google Scholar 

  • Fincham A, Delerce G (2000) Advanced optimization of correlation imaging velocimetry algorithms. Exp Fluids Suppl:13–22

    Article  Google Scholar 

  • Gui L, Longo J, Stern F (2001) Bias of PIV measurement of turbulent flow and the mased correlation-based interrogation algorithm. Exp Fluids 30(1):27–35

    Article  Google Scholar 

  • Huang HT, Fiedler HE, Wang JJ (1993) Limitation and improvement of PIV. Part II: particle image distortion, a novel technique. Exp Fluids 15(4/5):263–273

    CAS  Google Scholar 

  • Jambunathan K, Ju XY, Dobbins BN, Ashforth-Frost S (1995) An improved cross correlation technique for particle image velocimetry. Meas Sci Technol 6(5):507–514

    Article  CAS  ADS  Google Scholar 

  • Keane RD, Adrian RJ (1993) Theory of cross-correlation analysis of PIV images. Flow visualization and image analysis, pp 1–25

  • Lehmann TM, Gönner C, Spitzer K (1999) Survey: interpolation methods in medical image processing. IEEE Trans Med Imaging 18(11):1049–1075

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans Model Comput Simul 8(1):3–30

    Article  MATH  Google Scholar 

  • Nogueira J, Lecuona A, Rodriguez PA (1999) Local field correction PIV: on the increase of accuracy of digital PIV systems. Exp Fluids 27(2):107–116

    Article  Google Scholar 

  • Okamoto K, Nishio S, Saga T, Kobayashi T (2000) Standard images for particle-image velocimetry. Meas Sci Technol 11(6):685–691

    Article  CAS  ADS  Google Scholar 

  • Raffel M, Willert CE, Kompenhans J (1998) Particle image velocimetry: a practical guide, Springer, Berlin Heidelberg New York, pp 134-146

    Google Scholar 

  • Scarano F (2004a) A super-resolution particle image velocimetry interrogation approach by means of velocity second derivatives correlation. Meas Sci Technol 15(2):475–486

    Article  CAS  ADS  Google Scholar 

  • Scarano F (2004b) On the stability of iterative PIV image interrogation methods. In: Proceedings of 12th international symposium on appliacations of laser techniques to fluid mechanics, Lisbon, 12–15 July, 2004

  • Scarano F, Riethmuller ML (2000) Advances in iterative multigrid PIV image processing. Exp Fluids Suppl:51–60

    Article  Google Scholar 

  • Stanislas M, Okamoto K, Kähler C (2003) Main results of the first international PIV challenge. Meas Sci Technol 14(10):R63–R89

    Article  CAS  ADS  Google Scholar 

  • Tokumaru PT, Dimotakis PE (1995) Image correlation velocimetry. Exp Fluids 19(1):1–15

    Article  Google Scholar 

  • Tsuei L, Savas Ö (2000) Treatment of interfaces in particle image velocimetry. Exp Fluids 29(2):203–214

    Article  Google Scholar 

  • Wereley ST, Gui L (2003) A correlation-based central difference image correction (CDIC) method and application in a four-roll mill flow PIV measurement. Exp Fluids 34(1):42–51

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung Jin Sung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, B.J., Sung, H.J. A further assessment of interpolation schemes for window deformation in PIV. Exp Fluids 41, 499–511 (2006). https://doi.org/10.1007/s00348-006-0177-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-006-0177-y

Keywords

Navigation