Skip to main content
Log in

Experimental investigations on steady wake effects in a high-lift turbine cascade

  • Original
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This paper reports on the investigation of steady wake effects in cascades. An annular cascade rig, where two stators having the same blade pitch can be circumferentially traversed relatively to each other, is used to analyse the profile losses and the boundary layer development of the downstream stator for different circumferential positions of the upstream stator (“clocking positions”). Different measurement techniques are used such as three-hole pressure probes, and hot wire- and surface-mounted hot-film probes. The results show a varying pressure loss coefficient of the downstream cascade (S2) for different clocking positions of the upstream cascade (S1_SP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

c :

Flow velocity in absolute frame of reference

c m :

Mean flow velocity

clp :

Clocking position

Cp:

Static pressure coefficient

E :

Anemometer output voltage

E 0 :

Anemometer output voltage at zero velocity

G :

Threshold for intermittency calculation

k1:

Turbulent kinetic energy

l(t):

0/1-distribution for intermittency calculation

Ma c :

Mach number based on absolute velocity

P :

Static pressure

P tot :

Total pressure

PS :

Pressure side

S1_SP:

Stator 1

S2:

Stator 2

t :

Pitch, time

T :

Measuring time

S :

Surface length coordinate

S(t):

Detector function

S*(t):

Smoothed detector function

S ges :

Total surface length

SS :

Suction side

x :

Circumferential coordinate

α :

Flow angle

γ :

Intermittency

ω :

Loss coefficient

References

  • Acton P (1997) Untersuchungen des Grenzschichtumschlages an einem hochbelasteten Turbinengitter unter inhomogenen und instationären Zuströmbedingungen. Dissertation, Universität der Bundeswehr, München

  • Arnone A, Marconcini M, Del Greco AS, Spano E (2003) Numerical investigation of three-dimensional clocking effects in a low pressure turbine. ASME Turbo Expo, GT2003-38414

  • Binder A, Schröder T, Hourmouziadis J (1989) Turbulence measurements in a multistage LP-Turbine. ASME J Turbomach 111:153–161

    Google Scholar 

  • Breitbach C, Stoffel B (2001) Computation of wake-induced unsteady flow on a flat plate using two-layer turbulence models. In: Proceedings of the 8th international symposium on flow modelling and turbulence measurements, FMTM2001, Tokyo

  • Chakka P, Schobeiri MT (1999) Modelling unsteady boundary layer transition on a curved plate under periodic unsteady flow conditions: aerodynamic and heat transfer investigations. ASME J Turbomach 121:88–97

    Google Scholar 

  • Dorney DJ et al (1999) Full-annulus simulations of airfoil clocking in a 1 1/2 stage axial compressor. Int J Turbo Jet Engines 16:149–160

    Google Scholar 

  • Dorney DJ, Sharma OP (1996) A study of turbine performance increases through airfoil clocking. AIAA Paper 96-2816

  • Dorney DJ, Sondak DL, Stang UE et al (2001) Computational study of clocking in an embedded stage in a 4-stage industrial turbine. ASME Paper 2001-GT-0509

  • Engber M, Fottner L (1995) The effect of incoming wakes on boundary layer transition of a highly loaded turbine cascade. In: Proceedings of the AGARD PEP 85th symposium on loss mechanisms and unsteady flows in turbomachines, CP-571

  • Eulitz F, Engel K (1998) Numerical investigations of wake interactions in a low pressure turbine and its influence on loss mechanisms. ASME-Paper 98-GT-563

  • Gostelow JP, Thomas RL (2003) Response of a laminar separation bubble to an impinging wake. ASME Turbo Expo, Atlanta, GA, 16–19 June, GT2003-38972

  • Griffin LW, Huber FW, Sharma OP (1995) Performance improvement through indexing of turbine airfoils. Part 2: Numerical results. ASME Paper 95-GT-28

    Google Scholar 

  • Haldeman CW, Krumanaker ML, Dunn MG (2003) Influence of clocking and vane/blade spacing on the unsteady surface pressure loading for a modern stage and one-half transonic turbine. ASME Turbo Expo, GT2003-38724

  • Halstead DE et al (1997) Boundary layer development in axial compressors and turbines. Part 1: Composite picture. ASME J Turbomach 119:114–127

    Google Scholar 

  • Heinke W (2002) Experimentelle Untersuchungen zum Clocking-Effekt an einer stationären Stator-Stator-Anordnung. Dissertation, TU Darmstadt

  • Heinke W, Stoffel B, Heinig K, Fiala A (2000) Numerische Simulation und experimentelle Untersuchungen zum Clocking-Effekt. Tagungsband des Siebten Statusseminar Verbundprojekt C02-armes Kraftwerk, pp 11.1–11.12

  • Höhn W, Heinig K (2000) Numerical and experimental investigation of unsteady flow interaction in a low-pressure multistage turbine. ASME J Turbomach 122:628–633

    Article  Google Scholar 

  • Hourmouziadis J, Lou W (2000) Separation bubbles under steady and periodic-unsteady main flow conditions. ASME J Turbomach 122:634–643

    Article  Google Scholar 

  • Huber FW, Sharma OP, Gaddis SW (1995) Performance improvement through indexing of turbine airfoils. Part 1: Experimental investigation. ASME Paper 95-GT-27

    Google Scholar 

  • Jouini DBM, Little D, Bancalari E, Dunn M, Haldeman C, Johnson PD (2003) Experimental investigation of airfoil wake clocking impacts on aerodynamic performance in a two stage turbine test rig. ASME Turbo Expo, GT2003-38872

  • Ladwig M (1991) Experimentelle Untersuchungen zum Einfluß einer inhomogenen Zuströmung auf die Entwicklung des Strömungsfeldes in Turbinenschaufelgittern. Dissertation, Universität der Bundeswehr, München

  • Marconcini M, Pacciani R (2003) Numerical investigation of wake-shock interactions and clocking in a transonic HP turbine. ASME Turbo Expo, GT2003-38401

  • Reinmöller U, Niehuis R (2002) Clocking effects in a 1.5 stage axial turbine-steady and unsteady experimental investigations supported by numerical simulations. ASME J Turbomach 124:52–58

    Article  Google Scholar 

  • Stadtmüller P, Fottner L, Fiala A (2000) Experimental and numerical investigations of wake-induced transition on a highly loaded LP-turbine at low Reynolds numbers. ASME Paper, 2000-GT-0269

  • Walker GJ, Hughes JD, Solomon WJ (1998) Periodic transition on an axial compressor stator incidence and clocking effects. Parts I, II: ASME Paper, 98-GT-363 and 98-GT-364

Download references

Acknowledgements

The present investigation was partly financed and carried out as a part of the German Research program AG TURBO II under the leadership of the German Ministry of Economics and Labour. Further, we would like to acknowledge the financial and technical support of MTU Munich and their scientific advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven König.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinke, W., König, S., Matyschok, B. et al. Experimental investigations on steady wake effects in a high-lift turbine cascade. Exp Fluids 37, 488–496 (2004). https://doi.org/10.1007/s00348-004-0832-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-004-0832-0

Keywords

Navigation