Licht kann durch viele physikalische Eigenschaften beschrieben werden, wie seine Intensität, Frequenz oder den Polarisationsgrad. Farbe allerdings gehört nicht dazu. Farbe ist vielmehr eine Interpretation der spektralen Zusammensetzung des Lichtes, das von einem Objekt, das wir betrachten, reflektiert wird. Um Farbe wahrnehmen zu können, ist eine der Grundvoraussetzungen, dass die Netzhaut des Betrachters mit unterschiedlichen Zapfentypen ausgestattet ist, wobei jeder Zapfentyp für unterschiedliche Bereiche des Lichtspektrums empfindlich ist. Eine weitere Voraussetzung für Farbsehen ist, dass die Signale der verschiedenen Zapfentypen zentralnervös miteinander verglichen werden – mittels sog. Gegenfarbmechanismen.

Der Mensch als Spezialfall

Der Mensch besitzt in der Regel trichromatisches Farbensehen und 3 verschiedene Zapfentypen, die allgemein als Blau‑, Grün- und Rotzapfen bezeichnet werden, da ihre maximale Empfindlichkeit in etwa den Wellenlängen des Lichtes entspricht, die wir als blau, grün oder rot wahrnehmen. Allgemein geht man davon aus, dass die Signale dieser 3 Zapfentypen in 2 primären Gegenfarbmechanismen miteinander verglichen werden:

  • einem Mechanismus, der die Signale der Grünzapfen mit denen der Rotzapfen vergleicht, und

  • einem weiteren Mechanismus, der die Signale der Blauzapfen den kombinierten Signalen der Grün- und Rotzapfen gegenüberstellt.

Mit unseren 3 verschiedenen Zapfentypen ist es uns möglich, eine enorme Vielfalt an Farben zu unterscheiden. Dabei gehen die Schätzungen von läppischen 2,3 Mio. [1] bis hin zu 10 Mio. Farben [2].

Diese Vielfalt ist es wahrscheinlich, die gegen Ende des 19. Jahrhunderts, als begonnen wurde, das Farbensehen anderer Tierarten zu untersuchen, oftmals zu der irrigen Annahme führte, das Sehsystem der Tiere habe dieselbe spektrale Empfindlichkeit wie das des Menschen [3]. Heute wissen wir jedoch, dass unsere Welt der Farben eher die Ausnahme als die Regel darstellt. Im Laufe von Jahrmillionen hat die Evolution immer wieder verschiedene Varianten des Farbensehens hervorgebracht. Dabei unterscheiden sich sowohl die Anzahl der dem Farbensehen zugrunde liegenden Rezeptortypen als auch der spektrale Bereich des Lichtes, den diese Rezeptortypen abdecken. Diese Vielfältigkeit wollen wir hier anhand ausgewählter Beispiele vorstellen und erläutern.

Dichromatisches Sehen: die Regel bei Säugetieren

Was die Dimensionen des Farbensehens angeht, bilden wir Menschen innerhalb der Säugetiere eher eine Ausnahme. Die meisten Säuger sind Dichromaten [4,5,6]. Sie besitzen nur 2 Zapfentypen:

  • einen Zapfen, dessen Empfindlichkeit im kurzwelligem Bereich des Spektrums angesiedelt ist und der unserem Blauzapfen entspricht, und

  • einen weiteren Zapfen, der am empfindlichsten für langwelliges Licht ist (Abb. 1).

Die Sehpigmente oder Opsine dieser beiden Zapfentypen werden entsprechend als SWS1 („short wavelength sensitive 1“) und LWS („long wavelength sensitive“) bezeichnet. Während der Evolution, vor etwa 30 Mio. Jahren, ist unser Rotzapfen durch eine Verdopplung und anschließende Mutation des Gens entstanden, das bei anderen Säugetieren für das LWS-Opsin des Grünzapfens kodiert [7]. Unser Grünzapfen ist sozusagen 2‑mal vorhanden, wobei die Empfindlichkeit des LWS-Opsins eines dieser Zapfen zu längeren (von uns als rot wahrgenommenen) Wellenlängen hin verschoben ist.

Abb. 1
figure 1

Spektralempfindlichkeit der Sehzellen (links) und Chromatizitätsdiagramme (rechts) von a Pferd, b Honigbiene und c Huhn. Für das Huhn sind die Kurven ohne (durchgezogene Linien) und mit Filterung (unterbrochene Linien) durch Öltröpfchen gezeigt. In den Diagrammen rechts ist jeweils der Spektralzug mit ausgewählten Wellenlängen gezeigt. Die Eckpunkte stellen Farben dar, die nur einen Sehzellentyp erregen

Dichromaten können Farbton und Sättigung nicht voneinander unterscheiden

Dies ermöglicht es uns nicht nur, mehr Farben wahrzunehmen als die meisten anderen der Säugetiere, sondern es hat auch den Vorteil, dass wir über eine zusätzliche Dimension des Farbensehens verfügen. Wir Menschen unterscheiden grundsätzlich 3 Dimensionen von Farbe: eine achromatische Dimension, die Helligkeit, die durch die Kombination der Signale von Rot- und Grünzapfen und/oder der Stäbchen vermittelt wird, und 2 chromatische Dimensionen: den Farbton und die Farbsättigung [5, 8]. Wie in Abb. 1 dargestellt, beschreibt die „Sättigung“ wie stark sich ein Farbton von einem achromatischen Grau unterscheidet. Diese zusätzliche Dimension bietet einen wesentlichen Vorteil: Sie ermöglicht es uns, rein visuell Rückschlüsse auf die Materialbeschaffenheit von Objekten zu ziehen, z. B. die Stärke der Pigmentierung, Glanz oder Textur [3].

Da Dichromaten Farbton und Sättigung nicht voneinander unterscheiden können, stellt sich die Frage, wie sie Farben eigentlich wahrnehmen. Die Abb. 1 zeigt eine schematische Darstellung des Chromatizitätsdiagramms des Pferdes. Das Farbspektrum wird hier als eindimensionales Kontinuum der Rezeptoraktivierung dargestellt. Die beiden Extreme stellen Wellenlängen bzw. Farben dar, die entweder hauptsächlich den SWS1-Zapfen oder hauptsächlich den LWS-Zapfen aktivieren. In der Mitte dieses Kontinuums, am neutralen Punkt, befinden sich Farben, die beide Rezeptortypen gleichermaßen aktivieren. Anders als bei Tri- oder Tetrachromaten können diese Farben nicht von Grau unterschieden werden, das ebenfalls beide Zapfentypen gleichermaßen aktiviert.

Wir wissen, dass Menschen und Küken Grau qualitativ anders wahrnehmen als chromatische Farben, wie z. B. Blau, Orange oder Rot [9, 10]. Ein Farbkontinuum, das durch den achromatischen Punkt verläuft, wird durch diesen in 2 unterschiedliche Kategorien unterteilt [9]. Bei Dichromaten stellt sich daher die Frage, ob der Neutralpunkt deren eindimensionalen Farbraum ebenfalls in 2 Kategorien unterteilen [11] oder ob der Farbraum als Kontinuum wahrgenommen wird [12]. Diese Frage wurde in einer Studie von Roth, Balkenius und Kelber [13] beantwortet. Pferde wurden darauf dressiert, 2 unterschiedliche Farben, die in einiger Distanz voneinander auf dem Kontinuum lokalisiert waren, mit einer Belohnung zu assoziieren. Gleichzeitig lernten die Pferde eine weitere Farbe, die hauptsächlich einen der beiden Rezeptortypen aktivierte, nicht mit einer Belohnung zu assoziieren. Anschließende Tests zeigten, dass Pferde eine neue Farbe, die genau zwischen den aus der Dressur bekannten belohnten Farben liegt, ebenfalls mit einer Belohnung assoziieren. Das Interessante dabei ist, dass sie dies auch tun, wenn die neue Testfarbe genau auf dem neutralen Punkt liegt. Bei Küken wurde zuvor gezeigt, dass sie genau dies nicht tun [9]. Sie behandeln Grau als komplett anders als die mit einer Belohnung verbundenen chromatischen Farben. Die Tatsache, dass Pferde Grau genauso wie chromatische Farben behandelten, zeigt, dass der neutrale Punkt bei ihnen, anders als beim Menschen, den Farbraum nicht in 2 Kategorien unterteilt.

Warum sich mit weniger begnügen?

Wir haben bereits erwähnt, dass trichromatisches Farbensehen gegenüber dem dichromatischen Farbsehen Vorteile erbringt. Warum „begnügen“ die meisten Säuger (mit Ausnahme der Altweltaffen, Neuweltaffen, Menschenaffen und Menschen) sich dennoch mit einer Farbdimension weniger? Um diese Frage zu beantworten, müssen wir uns auf eine Zeitreise begeben. Bei den Wirbeltieren, zu denen auch die Säuger gehören, unterscheidet man 4 Genfamilien der Zapfen-Opsine. Diese sind neben den bereits erwähnten SWS1- und LWS-Genen, die RH1- und SWS2-Gene (Abb. 2). Bei Neunaugen, vielen Fischen sowie den meisten Reptilien und Vögeln wurden alle 4 Gene gefunden. Deshalb geht man davon aus, dass die Vorfahren der heutigen Säuger, die Synapsida, ebenfalls 4 Zapfenopsine hatten und Tetrachromaten waren ([3, 14]; Abb. 2 und 3). Während des Erdmittelalters, vor etwa 251 Mio. Jahren, koexistierten die Synapsida mit den Archosauriern, die so gut wie jede ökologische Nische dominierten. Das überlebten die Synapsiden nur, indem sie sich an eine vorwiegend nachtaktive Lebensweise anpassten. Erst am Ende der Kreidezeit, als es zum Massenaussterben der Archosaurier kam, wurden Säuger wieder tagaktiv. Die lange nachtaktive Phase der Säugetiervorfahren führte zu einer Anpassung des Auges an geringe Lichtverhältnisse [15]. Dabei spielt Farbensehen eine untergeordnete Rolle, während hohe Lichtempfindlichkeit und gutes Stäbchensehen wichtig waren, um bei Nacht hinreichend gut sehen zu können. Die Vorfahren der heutigen Säuger verloren also im Laufe der Evolution 2 der 4 ursprünglichen Vertebraten-Opsingene (Abb. 2 und 3) und wurden zu Dichromaten, um einer hohen Anzahl weitaus lichtempfindlicherer Stäbchen Platz zu machen.

Abb. 2
figure 2

Stammbaum der Zapfen-Opsingene der Wirbeltiere

Abb. 3
figure 3

Stammbaum der Amnioten mit Angabe der bei ihnen nachgewiesenen Zapfen-Opsine. Amnioten sind die Tetrapoden, die ihre Eier an Land legen oder im Mutterleib behalten, also Reptilien, Vögel und Säuger

Aber auch für einige tagaktive Raubtiere und Insektenfresser kann weniger mehr sein. Eine Strategie von Beutetieren, um von Räubern schwerer entdeckt zu werden, ist es, farblich mit dem Hintergrund zu verschmelzen. In einer Studie von Morgan und Mollon [16] sollten menschliche Probanden – sowohl normal farbtüchtige Trichromaten als auch Dichromaten – gemusterte Objekte vor einem Hintergrund mit unterschiedlichem Muster detektieren. Dabei hatten Objekt und Hintergrund entweder dieselbe Farbe, oder beide wurden zusätzlich mit Zufallsfarbmustern versehen. Für Trichromaten erschwerte diese Form der Camouflage die Detektion des Objekts deutlich, nicht aber für Dichromaten. Es ist also durchaus möglich, dass dichromatische Raubtiere kryptische Beute besser detektieren können als ihre trichromatische Konkurrenz.

UV-Empfindlichkeit und Farbensehen bei Säugern

Studien zur Evolution der Vertebraten-Opsine ergaben nicht nur, dass die Vorfahren der heutigen Säuger Tetrachromaten waren. Es zeigte sich auch, dass die SWS1-Opsine, die bei uns Menschen und vielen anderen tagaktiven Säugern für blaues Licht empfindlich sind, bei vielen Reptilien, Vögeln und Fischen für ultraviolettes (UV-)Licht am empfindlichsten sind ([3, 4]; Abb. 2). Man geht also davon aus, dass unsere Blauzapfen ursprünglich UV-Zapfen waren und sich im Laufe der Evolution durch Mutationen des SWS1-Opsingens die Empfindlichkeit des SWS1-Opsins zu längeren Wellenlängen hin verschoben hat [3, 4].

Selbst ohne UV-Opsin könnten wir theoretisch UV-Licht sehen, denn die Empfindlichkeit aller Sehpigmente erstreckt sich bis in den ultravioletten Bereich. Allerdings absorbiert unsere Augenlinse UV-Licht, sodass dieses die Sehzellen gar nicht erst erreicht. Patienten, denen bei einer Kataraktoperation die Linse entfernt oder eine künstliche, UV-durchlässige Linse eingesetzt wurde, konnten anschließend tatsächlich UV-Licht wahrnehmen [17,18,19]. Untersuchungen anderer Säugerarten zeigten, dass UV-durchlässige Linsen und daher UV-Empfindlichkeit bei Säugern sehr viel weiter verbreitet ist als ursprünglich vermutet [20]. Es gibt sogar einige Nager‑, Fledermaus- und Beuteltierarten, die nicht nur UV-durchlässige Linsen haben, sondern auch ein SWS1-Opsin, das wie bei ursprünglichen Säugern UV-empfindlich ist (s. Jacobs [4]). Zu diesen Arten gehören die Ratte, die Maus und der Degu. Verhaltensstudien zeigten, dass diese Arten lernen können, UV-Licht von „sichtbarem“ Licht farblich zu unterscheiden. Allerdings brauchte es extrem viel Zeit und Geduld, bis sie diese Farbunterscheidung lernten. Eine bahnbrechende Studie von Joesch und Meister [21] zeigte, dass das UV-Farbsehen bei Mäusen unter bestimmten Bedingungen nicht etwa auf dem Vergleich des UV-Zapfens mit dem Grünzapfen beruht, sondern auf einem Vergleich von Stäbchensignalen mit den Signalen der UV-Zapfen. Die Autoren wiesen zudem nach, dass dieses UV-Farbensehen dazu führt, dass Mäuse Urinmarkierungen, die UV stark absorbieren, und einige Futterquellen, die UV stark reflektieren, sehr gut sehen, während sie für das menschliche Auge nur schwer auszumachen sind.

Spezialfall marine Säuger

Die Regel, dass Säugetiere 2 Zapfentypen haben, trifft auf die meisten landlebenden Arten zu. Sogar unter den nachtaktiven Säugern gibt es nur wenige Arten, die einen der beiden Zapfentypen verloren haben [22,23,24,25,26]. Was bei landlebenden Säugern die Ausnahme darstellt, ist bei den 2 großen Gruppen der marinen Säugetiere jedoch zur Regel geworden. Alle Wale und Robben haben im Laufe der Evolution ihre SWS1-Zapfen als Anpassung an die sekundär aquatische Lebensweise verloren [25, 27,28,29,30,31]. Einige Arten der Bartenwale haben sogar eine reine Stäbchenretina [32]. Trotzdem berichten einzelne Verhaltensstudien mit Seebären, Seelöwen, Seehunden oder einem Delfin, diese marinen Säuger könnten Farben sehen [33, 34], obwohl all diese Arten nur LWS-Zapfen besitzen. Diese Farbwahrnehmung soll auf dem Vergleich der Zapfensignale mit Stäbchensignalen beruhen. Bei Menschen, denen 1 oder 2 Zapfentypen fehlen (s. Jacobs [35]), bei Nachtaffen [36] und bei Mäusen [21] hat man gefunden, dass Stäbchen unter mesopischen Lichtverhältnissen tatsächlich zum Farbensehen beitragen können. Bei den Studien mit marinen Säugern kann man allerdings nicht ausschließen, dass die Versuchstiere „geschummelt“ haben und die Farben in den Versuchen rein aufgrund von Helligkeitsunterschieden diskriminieren konnten [37]. Diese Zweifel an der Fähigkeit mariner Säuger, Farben sehen zu können, wurden vor Kurzem in einer Studie von Scholtyssek und Kelber untermauert [38]. Die getesteten Seehunde konnten 2 Farben unter mesopischen Verhältnissen nicht unterscheiden, wenn diese Farben für sie zweifelsfrei gleich hell waren.

Rein theoretisch ist Farbensehen für marine Säuger nicht besonders hilfreich, denn Farbensehen kompromittiert die Lichtempfindlichkeit des Auges. Und genau auf diese sind marine Säuger stark angewiesen. Wasser absorbiert und streut Licht in starkem Maße, sodass in den Tiefen, in denen marine Säuger jagen (bei Seeelefanten bis zu 1400 m), nur wenig Licht vorhanden ist. Zudem werden unterschiedliche Bereiche des Spektrums unterschiedlich stark absorbiert, wodurch das Spektrum sehr schmal wird. Unter diesen Umständen ist es wahrscheinlich, dass Vorteile des Farbensehens, wie z. B. Farbkonstanz, nicht mehr bestehen. Anders als für landlebende Tiere hätte Farbensehen für marine Säuger also ausschließlich Nachteile.

Meister des Farbensehens

Nun wissen wir über farbenblinde Tiere – Monochromaten – und über Dichromaten Bescheid. Das trichromatische Farbensehen ist uns bestens vertraut. Aber was bedeutet es, Tetrachromat zu sein? Diese Frage kann kein Mensch wirklich beantworten, denn bei den wenigen Menschen (ausschließlich Frauen), die diese Form des Farbensehens haben, führt sie nicht zu großen Veränderungen der Wahrnehmung, da das vierte Opsin seine Empfindlichkeit zwischen dem Rot- und dem Grün-Opsin hat [39].

Bei tetrachromatischen Fischen, Reptilien und Vögeln ist das vierte Sehpigment dagegen UV-empfindlich (Abb. 1 und 3), und das erlaubt es diesen Tieren, die Welt tatsächlich in sehr viel mehr Farben zu sehen als wir. Mit Spektrometern und UV-empfindlichen Kameras können wir diese Farben zwar messen, aber nicht unserer eigenen Wahrnehmung zugänglich machen. Viele Fische, die im flachen Wasser der Korallenriffe leben, haben UV-Muster und können diese auch sehen [40], und die blaue Haube einer Blaumeise reflektiert ebenso viel UV- wie blaues Licht [41], die Art verdient also eigentlich den Namen UV-Meise.

Bei tetrachromatischen Fischen, Reptilien und Vögeln ist das vierte Sehpigment UV-empfindlich

Vögel sind aber nicht nur farbenfrohe Tetrachromaten, sondern haben noch weitere Anpassungen an das Farbensehen. Jeder ihrer Zapfen ist mit einem farbigen Öltröpfchen versehen, der das Licht filtert, bevor es das Sehpigment erreicht. Das schärft die Farbunterscheidung und verbessert die Farbkonstanz [42]. Vögel können daher im für den Menschen sichtbaren Spektralbereich sehr feine Farbunterschiede sehen, wie Untersuchungen an Hühnern und Wachteln [43,44,45] vor Kurzem bestätigt haben. Gleichzeitig nehmen die Öltröpfchen aber auch Licht weg, sodass die absolute Empfindlichkeit der Zapfen abnimmt (Abb. 1).

Dass Vögel zusätzlich zu Rot, Grün und Blau noch UV sehen können, muss ihre Welt wirklich farbenprächtig erscheinen lassen. Nur bei wenigen Vogelarten ist die UV-Sichtigkeit eingeschränkt, so wie bei den Greifvögeln und den Mauerseglern, deren Linse ebenso wie beim Menschen UV-Licht weitgehend absorbiert [46, 47]. Ein paar weitere Arten haben das UV-Sehen völlig verloren, darunter die Eulen, denen das UV-Opsin offenbar vollständig fehlt [48].

Aber ansonsten sind Vögel die Meister des Farbensehens – jedenfalls unter den Wirbeltieren. Wenn wir dagegen das gesamte Tierreich einbeziehen, finden sich noch weitere Champions, allen voran die Schmetterlinge und die Fangschreckenkrebse. Generell ist das Farbensehen, abgesehen von den Wirbeltieren, bei Insekten und Krebsen am besten entwickelt. Diese beiden Gruppen sind nicht nur extrem artenreich, sondern auch sehr divers und haben mit ihren Facettenaugen ausgezeichnetes Sehvermögen. Wie bei allen Gliederfüßern gehört die Fähigkeit, UV-Licht zu sehen, bei ihnen zur Grundausstattung. Das wurde zuerst bei der Honigbiene entdeckt, deren von Nobelpreisträger Karl von Frisch schon vor 100 Jahren beschriebenes Farbensehen v. a. dazu dient, nektar- und pollenreiche Blüten zu entdecken (s. [5]). Während Bienen wie wir Menschen Trichromaten sind – allerdings mit einer zum UV verschobenen Spektralempfindlichkeit und mit UV-, Blau- und Grün-Opsin (Abb. 1) – sind viele Schmetterlingsarten Tetrachromaten [49]. Das mag ihnen helfen, nicht nur Blüten zu finden, sondern auch feine Unterschiede zwischen ihren farbenprächtigen Artgenossen zu sehen und die Pflanzen für die Eiablage auszuwählen, die ihren Raupen die besten Voraussetzungen bieten. Wozu einzelne Arten allerdings 6, 7 oder bis zu 15 Sehzelltypen mit verschiedener Spektralempfindlichkeit brauchen [49], ist immer noch ein Rätsel. Und dasselbe gilt für einzelne Arten der Fangschreckenkrebse, bei denen bis zu 16 Sehzelltypen gefunden wurden [50].

Farbensehen bei Nacht

Bei Nacht sind alle Katzen grau, besagt ein altes Sprichwort, und das gilt nicht nur für uns Menschen, sondern tatsächlich für viele Tiere. Unsere Zapfen reagieren sehr schnell auf Licht, sind daher aber weniger empfindlich als unsere langsameren Stäbchen, die aber alle dieselbe Spektralempfindlichkeit haben. Daher sind wir in einer mondlosen Nacht ohne Hilfsmittel farbenblind, was weitaus besser ist, als gar nichts zu sehen. Dasselbe gilt für die meisten Wirbeltiere, die wie wir eine Duplexretina mit Stäbchen und Zapfen haben. Einige Säugerarten haben, wie schon erwähnt, das Farbensehen ganz verloren. Dasselbe gilt für die Mehrzahl der Tiefseefische, die ihre Netzhaut rein mit Stäbchen bestücken [51]. Viele Vögel verlieren das Farbensehen sogar schon bei höheren Lichtintensitäten als der Mensch.

Aber es gibt Ausnahmen. Frösche und Kröten haben im Unterschied zu anderen Wirbeltieren nicht einen sondern 2 Typen Stäbchen: grünempfindliche und blauempfindliche Stäbchen. Das erlaubt es ihnen, unter bestimmten Verhältnissen auch dann Farbinformation zu verwenden, wenn alle anderen entweder gar nichts mehr sehen oder eben in Schwarz-Weiß [52]. Nachtaktive Geckos haben ähnliche Fähigkeiten, obwohl sie gar keine Stäbchen haben. Bei ihnen sind dagegen die physiologischen Eigenschaften der Zapfen an das Sehen im Dunkeln angepasst [53]. Einige Tiefseefische mit einer reinen Stäbchenretina besitzen ebenfalls 2 verschiedene Stäbchentypen mit unterschiedlicher Spektralempfindlichkeit [54]. Ob dies allerdings wie bei Fröschen und Kröten zu Farbensehen führt oder lediglich dazu beiträgt, das Kontrastsehen unter verschiedenen Lichtverhältnissen zu verbessern, ist bisher nicht bekannt [55].

Insekten haben keine Duplexretina, sie verwenden Tag und Nacht dieselben Sehzellen. Eine Vielzahl von Insekten, darunter die Kakerlaken, viele Ameisen‑, Grillen- und Heuschreckenarten, alle Nachtfalter, aber auch einzelne Wespen- und Bienenarten sind nachtaktiv. Tatsächlich haben Versuche gezeigt, dass zumindest große Nachtfalter wie die Linien- und Weinschwärmer und nachtaktive asiatische Holzbienen auch bei Nacht die Blüten, die sie besuchen, in Farbe sehen [56].

Fazit für die Praxis

  • Der Mensch verfügt über ein trichromatisches Sehsystem.

  • Die Mehrzahl der Säugetiere hat nur 2 Zapfentypen und daher dichromatisches Farbensehen.

  • Marine Säuger und einige nachtaktive Säugetiere haben nur 1 Zapfentypen und sind völlig farbenblind.

  • Vögel sowie viele Fische und Reptilien sehen die Welt in mehr Farbtönen und mit 4 Zapfentypen.

  • Viele Wirbeltiere, Insekten und Krebstiere sehen nicht nur das für uns wahrnehmbare Spektrum, sondern auch UV-Strahlung als Licht.