Skip to main content
Log in

Spielt die Aderhautdicke beim idiopathischen Makulaforamen eine Rolle?

Is choroidal thickness of importance in idiopathic macular hole?

  • Originalien
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Es gibt Hinweise, dass die Aderhaut (AH) bei der Pathogenese des idiopathischen Makulaforamens (MF) eine Rolle spielen kann. Kürzlich wurde berichtet, dass die AH-Dicke bei MF sowohl am betroffenen Auge wie auch am nicht betroffenen Partnerauge signifikant dünner ist als bei alterskorrelierten Kontrollaugen.

Methode

Bei 12 Patienten mit MF wurde die subfoveale AH-Dicke mit dem „Enhanced Depth Imaging“ (EDI)-Modus des Spectralis vermessen. Bei 2 dieser Patienten bestand ein beidseitiges MF. Die Messungen erfolgten präoperativ sowie 8 Wochen und 6 Monate postoperativ.

Ergebnisse

Die subfoveale AH-Dicke betrug bei 12 Patienten mit MF 274 ± 65 µm. Am gesunden Partnerauge der 10 Patienten maß die AH 268 ± 75 µm und bei 2 Patienten mit bilateralen MF am nicht operierten Partnerauge 309 ± 34 µm. Die Achsenlänge (AL) betrug bei Augen mit MF 23,64 ± 0,59 mm und bei gesunden Partneraugen 23,68 ± 0,54 mm. Postoperativ war bei allen Patienten das MF verschlossen, und die AH-Messung ergab 8 Wochen postoperativ 284 ± 77 µm und 6 Monate postoperativ 276 ± 73 µm.

Schlussfolgerung

Das EDI-OCT ermöglicht die Messung der AH-Dicke. In der hier untersuchten Patientengruppe ließ sich keine reduzierte AH-Dicke ermitteln. Der prä- und postoperative Vergleich der AH-Dicke ergab keinen signifikanten Unterschied. Im Gegensatz zu kürzlich publizierten Daten konnte keine AH-Verdünnung bei MF nachgewiesen werden.

Abstract

Background

The pathogenesis of idiopathic macular hole (MH) formation is not fully understood and the choroid might be involved in its etiology. Recently published data reported choroidal thickness (CT) to be significantly thinner in eyes with idiopathic MH and in fellow eyes compared to age-matched healthy controls [24].

Methods

The enhanced depth imaging (EDI) modus of the Spectralis OCT (Heidelberg Engineering, Heidelberg) was used to measure subfoveal CT in 12 patients with MH of which 2 suffered from bilateral MH. Measurements were manually acquired preoperatively using the horizontal foveal scan of the 7-line scan (5 × 30  perifoveal) with 100 averaged scans per scan, between the outer border of the retinal pigment epithelium and the inner scleral border. Additional CT measurements were obtained 8 weeks and 6 months postoperatively.

Results

Subfoveal CT of the 12 patients with MH (10 ♀, 2 ♂; 68 ± 7 years) was 274 ± 65 µm. The CT of the 10 patients with healthy fellow eyes measured 268 ± 75 µm and CT of the 2 patients with bilateral MH measured 309 ± 34 µm in the non-operated eye. The mean axial length (AL) in eyes with MH was 23.64 ± 0.59 mm and in healthy fellow eyes 23.68 ± 0.54 mm. After surgery MH closure was obvious in all eyes, the postoperative CT at 8 weeks measured 284 ± 77 µm and at 6 months 276 ± 73 µm.

Conclusions

The EDI-OCT procedure enables measurements of CT. In the patients studied a reduced CT could not be found neither in patients with macular holes nor in the fellow eyes. There was no significant change in CT comparing preoperative with postoperative measurements. In contrast to recently published data [24] no reduction in CT in idiopathic macular hole could be demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Aras C, Ocakoglu O, Akova N (2004) Foveolar choroidal blood flow in idiopathic macular hole. Int Ophthalmol 25:225–232

    Article  PubMed  Google Scholar 

  2. Brown JS, Flitcroft DI, Ying G-S et al (2009) In vivo human choroidal thickness measurements: evidence for diurnal fluctuations. Invest Ophthalmol Vis Sci 50:5–12

    Article  PubMed  Google Scholar 

  3. Chakraborty R, Read SA, Collins MJ (2011) Diurnal variations in axial length, choroidal thickness, intraocular pressure, and ocular biometrics. Invest Ophthalmol Vis Sci 52:5121–5129

    Article  PubMed  Google Scholar 

  4. Chou PI, Lu DW, Chen JT (2001) Adrenergic supersensitivity of rabbit choroidal blood vessels after sympathetic denervation. Curr Eye Res 23:352–356

    Article  PubMed  CAS  Google Scholar 

  5. Fujiwara T, Imamura Y, Margolis R et al (2009) Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol 148:445–450

    Article  PubMed  Google Scholar 

  6. Gass JD (1995) Reappraisal of biomicroscopic classification of stages of development of a macular hole. Am J Ophthalmol 119:752–759

    PubMed  CAS  Google Scholar 

  7. Gass JD (1988) Idiopathic senile macular hole. Its early stages and pathogenesis. Arch Ophthalmol 106:629–639

    Article  PubMed  CAS  Google Scholar 

  8. Grunwald JE, Hariprasad SM, Dupont J (1998) Effect of aging on foveolar choroidal circulation. Arch Ophthalmol 116:150–154

    PubMed  CAS  Google Scholar 

  9. Ikuno Y, Maruko I, Yasuno Y et al (2011) Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci 52:5536–5540

    Article  PubMed  Google Scholar 

  10. Imamura Y, Fujiwara T, Margolis R, Spaide RF (2009) Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina 29:1469–1473

    Article  PubMed  Google Scholar 

  11. Kim SW, Oh J, Kwon SS et al (2011) Comparison of choroidal thickness among patients with healthy eyes, early age-related maculopathy, neovascular age-related macular degeneration, central serous chorioretinopathy, and polypoidal choroidal vasculopathy. Retina 31:1904–1911

    Article  PubMed  Google Scholar 

  12. Kimura H, Kuroda S, Nagata M (2005) Macular hole formation in postvitrectomized eyes. Retina 25:521–523

    Article  PubMed  Google Scholar 

  13. Linsenmeier RA, Padnick-Silver L (2000) Metabolic dependence of photoreceptors on the choroid in the normal and detached retina. Invest Ophthalmol Vis Sci 41:3117–3123

    PubMed  CAS  Google Scholar 

  14. Lipham WJ, Smiddy WE (1997) Idiopathic macular hole following vitrectomy: implications for pathogenesis. Ophthalmic Surg Lasers 28:633–639

    PubMed  CAS  Google Scholar 

  15. Lütjen-Drecoll E (2006) Choroidal innervation in primate eyes. Exp Eye Res 82:357–361

    Article  PubMed  Google Scholar 

  16. Margolis R, Spaide RF (2009) A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol 147:811–815

    Article  PubMed  Google Scholar 

  17. Maul EA, Friedman DS, Chang DS et al (2011) Choroidal thickness measured by spectral domain optical coherence tomography. Ophthalmology 118:1571–1579

    Article  PubMed  Google Scholar 

  18. McCourt EA, Cadena BC, Barnett CJ et al (2010) Measurement of subfoveal choroidal thickness using sprectral domain optical coherence tomography. Ophthalmic Surg Lasers Imaging 41:28–33

    Article  Google Scholar 

  19. McDonnell PJ, Fine SL, Hillis AL (1982) Clinical features of idiopathic macular cysts and holes. Am J Ophthalmol 93:777–786

    PubMed  CAS  Google Scholar 

  20. Morgan CM, Schatz H (1986) Involutional macular thinning. A pre-macular hole condition. Ophthalmology 93:153–161

    PubMed  CAS  Google Scholar 

  21. Parver LM, Auker C, Carpenter DO (1980) Choroidal blood flow as a heat dissipating mechanism in the macula. Am J Ophthalmol 89:641–646

    PubMed  CAS  Google Scholar 

  22. Polak K, Luksch A, Berisha F et al (2007) Altered nitric oxide system in patients with open-angle glaucoma. Arch Ophthalmol 125:494–498

    Article  PubMed  CAS  Google Scholar 

  23. Rahman W, Chen FK, Yeoh J et al (2011) Repeatability of manual subfoveal choroidal thickness measurements in healthy subjects using the technique of enhanced depth imaging optical coherence tomography. Invest Ophthalmol Vis Sci 52:2267–2271

    Article  PubMed  Google Scholar 

  24. Reibaldi M, Boscia F, Avitabile T et al (2011) Enhanced depth imaging optical coherence tomography of the choroid in idiopathic macular hole: a cross-sectional prospective study. Am J Ophthalmol 151:112–117

    Article  PubMed  Google Scholar 

  25. Reitsamer HA, Zawinka C, Branka M (2004) Dopaminergic vasodilation in the choroidal circulation by d1/d5 receptor activation. Invest Ophthalmol Vis Sci 45:900–905

    Article  PubMed  Google Scholar 

  26. Shimura M, Uchida S, Suzuki A et al (2002) Reflex choroidal blood flow responses of the eyeball following somatic sensory stimulation in rats. Auton Neurosci 97:35–41

    Article  PubMed  Google Scholar 

  27. Spaide RF (2009) Enhanced depth imaging optical coherence tomography of retinal pigment epithelial detachment in age-related macular degeneration. Am J Ophthalmol 147:644–652

    Article  PubMed  Google Scholar 

  28. Spaide RF, Koizumi H, Pozonni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500

    Article  PubMed  Google Scholar 

  29. Targino A, Costa RA, Calucci D et al (2008) OCT findings in macular hole formation in eyes with complete vitreofoveal separation. Ophthalmic Surg Lasers Imaging 39:65–68

    Article  PubMed  Google Scholar 

  30. Torres VLL, Brugnoni N, Kaiser PK, Singh S (2011) Optical coherence tomography enhanced depth imaging of choroidal tumors. Am J Ophthalmol 151:586–593

    Article  PubMed  Google Scholar 

  31. Vance SK, Imamura Y, Frend B (2011) The effect of sildenafil citrate on choroidal thickness as determined by enhanced depth imaging optical coherence tomography. Retina 31:332–335

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dithmar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaal, K., Pollithy, S. & Dithmar, S. Spielt die Aderhautdicke beim idiopathischen Makulaforamen eine Rolle?. Ophthalmologe 109, 364–368 (2012). https://doi.org/10.1007/s00347-012-2529-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-012-2529-8

Schlüsselwörter

Keywords

Navigation