Skip to main content
Log in

Intraokularlinsen für die mikroinzisionale Kataraktchirurgie

Intraocular lenses for microincisional cataract surgery

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Entscheidend für die Inzisionsgröße bei der mikroinzisionalen Kataraktchirurgie (MICS) ist der minimal erreichbare IOL-Durchmesser bei Implantation bzw. der stark davon abhängige äußere Durchmesser des verwendeten Injektorsystems. Heute ist eine Implantation von IOL durch Inzisionen ≤2,0 mm möglich. Um den daraus resultierenden Anforderungen (Faltbarkeit, Stabilität, etc.) gerecht zu werden, müssen die IOL in Material und Design entsprechend optimiert sein. Durch die geringen induzierten Astigmatismen sowie Aberrationen höherer Ordnung ist die Vorhersagbarkeit des refraktiven Ergebnisses der Operation besser als bei Methoden mit größerer Inzision. Daher bieten sich die MICS-Verfahren für die Implantation von IOL mit speziellen Optikdesigns, wie asphärische, torische oder multifokale IOL, an.

Abstract

Incision size in micro-incisional cataract surgery (MICS) is dependent on the minimal size of the folded or rolled intraocular lens (IOL) during implantation and thus the outer diameter of the injector system used. At present implantations through incisions <2.0 mm are possible. MICS IOLs have to be optimized for this small dimension in terms of material and lens body design. Compared to standard procedures, MICS induces little astigmatism and higher order aberrations. Thus MICS procedures provide better predictability in terms of postoperative refractive results. This is of special interest when implanting advanced optic designs, such as aspheric, toric or multifocal IOLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Abela-Formanek C, Amon M, Schild G et al (2002) Uveal and capsular biocompatibility of hydrophilic acrylic, hydrophobic acrylic, and silicone intraocular lenses. J Cataract Refract Surg 28:50–61

    Article  PubMed  Google Scholar 

  2. Alio JL, Rodriguez-Prats JL, Vianello A, Galal A (2005) Visual outcome of microincision cataract surgery with implantation of an Acri.Smart lens. J Cataract Refract Surg 31:1549–1556

    Article  PubMed  Google Scholar 

  3. Alio JL, Schimchak P, Montes-Mico R, Galal A (2005) Retinal image quality after microincision intraocular lens implantation. J Cataract Refract Surg 31:1557–1560

    Article  PubMed  Google Scholar 

  4. Apple DJ, Mamalis N, Loftfield K et al (1984) Complications of intraocular lenses. A historical and histopathological review. Surv Ophthalmol 29:1–54

    Article  CAS  PubMed  Google Scholar 

  5. Apple DJ, Solomon KD, Tetz MR et al (1992) Posterior capsule opacification. Surv Ophthalmol 37:73–116

    Article  CAS  PubMed  Google Scholar 

  6. Baumeister M, Buhren J, Kohnen T (2009) Tilt and decentration of spherical and aspheric intraocular lenses: effect on higher-order aberrations. J Cataract Refract Surg 35:1006–1012

    Article  PubMed  Google Scholar 

  7. Cleary G, Spalton DJ, Hancox J et al (2009) Randomized intraindividual comparison of posterior capsule opacification between a microincision intraocular lens and a conventional intraocular lens. J Cataract Refract Surg 35:265–272

    Article  PubMed  Google Scholar 

  8. Denoyer A, Denoyer L, Marotte D et al (2008) Intraindividual comparative study of corneal and ocular wavefront aberrations after biaxial microincision versus coaxial small-incision cataract surgery. Br J Ophthalmol 92:1679–1684

    Article  CAS  PubMed  Google Scholar 

  9. Dosso AA, Cottet L, Burgener ND, Di Nardo S (2008) Outcomes of coaxial microincision cataract surgery versus conventional coaxial cataract surgery. J Cataract Refract Surg 34:284–288

    Article  PubMed  Google Scholar 

  10. Elkady B, Alio JL, Ortiz D, Montalban R (2008) Corneal aberrations after microincision cataract surgery. J Cataract Refract Surg 34:40–45

    Article  PubMed  Google Scholar 

  11. Elkady B, Pinero D, Alio JL (2009) Corneal incision quality: microincision cataract surgery versus microcoaxial phacoemulsification. J Cataract Refract Surg 35:466–474

    Article  PubMed  Google Scholar 

  12. Fabian E (2009) Apparative Vorraussetzungen für MICS. Ophthalmologe ■■■■■

  13. Faschinger CW (2001) Surface abnormalities on hydrophilic acrylic intraocular lenses implanted by an injector. J Cataract Refract Surg 27:845–849

    Article  CAS  PubMed  Google Scholar 

  14. Findl O, Buehl W, BauerP P, Sycha T (2007) Interventions for preventing posterior capsule opacification. Cochrane Database Syst Rev (3). Art. No.: CD003738. DOI: 10.1002/14651858.CD003738.pub2

  15. Hayashi K, Harada M, Hayashi H et al (1997) Decentration and tilt of polymethyl methacrylate, silicone, and acrylic soft intraocular lenses. Ophthalmology 104:793–798

    CAS  PubMed  Google Scholar 

  16. Hayashi K, Hayashi H (2005) Comparison of the stability of 1-piece and 3-piece acrylic intraocular lenses in the lens capsule. J Cataract Refract Surg 31:337–342

    Article  PubMed  Google Scholar 

  17. Hayashi K, Yoshida M, Hayashi H (2009) Postoperative corneal shape changes: microincision versus small-incision coaxial cataract surgery. J Cataract Refract Surg 35:233–239

    Article  PubMed  Google Scholar 

  18. Kaufmann C, Krishnan A, Landers J et al (2009) Astigmatic neutrality in biaxial microincision cataract surgery. J Cataract Refract Surg 35:1555–1562

    Article  PubMed  Google Scholar 

  19. Koeppl C, Findl O, Kriechbaum K et al (2005) Change in IOL position and capsular bag size with an angulated intraocular lens early after cataract surgery. J Cataract Refract Surg 31:348–353

    Article  PubMed  Google Scholar 

  20. Kohnen T, Fabian E, Gerl R et al (2008) Optic edge design as long-term factor for posterior capsular opacification rates. Ophthalmology 115:1308–1314, 1314:e1301–e1303

    Google Scholar 

  21. Kohnen T, Klaproth OK (2008) Incision sizes before and after implantation of SN60WF intraocular lenses using the Monarch injector system with C and D cartridges. J Cataract Refract Surg 34:1748–1753

    Article  PubMed  Google Scholar 

  22. Lloyd AW, Faragher RG, Denyer SP (2001) Ocular biomaterials and implants. Biomaterials 22:769–785

    Article  CAS  PubMed  Google Scholar 

  23. Lubinski W, Podboraczyniska-Jodko K, Barnyk K, Karczewicz D (2007) Microincision cataract surgery with implantation of an Acri.Smart 48S lens. Klin Oczna 109:267–271

    PubMed  Google Scholar 

  24. Moglich M, Haberle H, Pham DT, Wirbelauer C (2008) Aberration corrected intraocular lens for microincision cataract surgery (MICS): intraindividual comparison with a conventional lens – 1-year follow-up. Ophthalmologe ■■■■■

  25. Müller M, Kohnen T (2009) Schnittführung – was passiert bei MICS? Ophthalmologe ■■■■■

  26. Rosen ES (2009) Balancing act. J Cataract Refract Surg 35:205

    Article  PubMed  Google Scholar 

  27. Saeed A, O’Connor J, Cunnife G et al (2008) Uncorrected visual acuity in the immediate postoperative period following uncomplicated cataract surgery: bimanual microincision cataract surgery versus standard coaxial phacoemulsification. Int Ophthalmol

  28. Saika S (2004) Relationship between posterior capsule opacification and intraocular lens biocompatibility. Prog Retin Eye Res 23:283–305

    Article  CAS  PubMed  Google Scholar 

  29. Schaumberg DA, Dana MR, Christen WG, Glynn RJ (1998) A systematic overview of the incidence of posterior capsule opacification. Ophthalmology 105:1213–1221

    Article  CAS  PubMed  Google Scholar 

  30. Tong N, He JC, Lu F et al (2008) Changes in corneal wavefront aberrations in microincision and small-incision cataract surgery. J Cataract Refract Surg 34:2085–2090

    Article  PubMed  Google Scholar 

  31. Wilczynski M, Supady E, Loba P et al (2009) Comparison of early corneal endothelial cell loss after coaxial phacoemulsification through 1.8 mm microincision and bimanual phacoemulsification through 1.7 mm microincision. J Cataract Refract Surg 35:1570–1574

    Article  PubMed  Google Scholar 

  32. Wilczynski M, Supady E, Piotr L et al (2009) Comparison of surgically induced astigmatism after coaxial phacoemulsification through 1.8 mm microincision and bimanual phacoemulsification through 1.7 mm microincision. J Cataract Refract Surg 35:1563–1569

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehung/en hin: Der Erstautor ist als wissenschaftlicher Berater für IOL-Entwicklungen für Alcon Pharma, Bausch & Lomb Surgical, Hoya Surgical und Rayner Surgical tätig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kohnen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohnen, T., Klaproth, O. Intraokularlinsen für die mikroinzisionale Kataraktchirurgie. Ophthalmologe 107, 127–135 (2010). https://doi.org/10.1007/s00347-009-1978-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-009-1978-1

Schlüsselwörter

Keywords

Navigation