Skip to main content
Log in

Flächenbestimmung der Papille mittels indirekter Ophthalmoskopie

Measurement of the Disc Area by Indirect Ophthalmoscopy

  • Originalien
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Ziel der Studie war es, die Genauigkeit der mittels indirekter Ophthalmoskopie (iO.) bestimmten Papillenfläche zu beurteilen.

Patienten und Methoden

In einer prospektiven Studie wurden 57 Augen von 29 Probanden (Alter: 57,3±12,1 Jahre) untersucht. Der refraktive Fehler betrug −0,67±2,69 dpt (+3,75 bis −8 dpt). Die vertikalen und horizontalen Papillendurchmesser (PD) wurden an einer Haag-Streit-Spaltlampe mittels einer 60D-, 78D-, 90D- und der Super-Field-Lupe (Volk Optical Inc., Mentor, USA) ausgemessen und anschließend mit Hilfe einer Ellipsenformel (Horizontaler PD × vertikaler PD × π/4) die Papillenfläche berechnet. Dabei wurde für jede Lupe der vom Hersteller angegebene Vergrößerungsfaktor berücksichtigt: 1,15× (60D-Lupe), 0,93× (78D-Lupe), 0,76× (90D-Lupe) und 0,76× (Super-Field-Lupe). Als Referenzpapillenfläche wurde bei allen untersuchten Augen eine Aufnahme mit dem HRT II (Heidelberg Engineering, Heidelberg, Deutschland) durchgeführt. Die Beurteilung der Übereinstimmung der Messungen mit der Referenz erfolgte mittels Bland-Altman-Plots.

Ergebnisse

Es ergaben sich folgende Abweichungen zur HRT-Papillenfläche: 0,119±0,51 mm2 (60D-Volk-Lupe), 0,224±0,57 mm2 (78D-Lupe), 0,10±0,51 mm2 (90D Lupe) und −0,07±0,47 mm2 (Super-Field-Lupe). Die Unterschiede waren für die 60D (p=0,083), 90D (p=0,147) und Super-Field-Lupe (p=0,257) nicht statistisch signifikant. Die 78D-Lupe zeigte im t-Test signifikante Unterschiede zu der Bestimmung der Papillenfläche mittels HRT (p=0,004).

Schlussfolgerung

Die Bestimmung der Papillenfläche ist mittels indirekter Ophthalmoskopie möglich. Die Messungen mit der 90D-Lupe zeigten die geringsten Abweichungen und die mit der 78D-Lupe die größten Abweichungen von der HRT-Papillenfläche.

Abstract

Purpose

The aim of this study was to assess the accuracy of measuring the optic disc area by indirect ophthalmoscopy.

Patients and methods

In a prospective clinical trial, 57 eyes of 29 subjects (age 57.3±12.1 years) were examined. The refractive error was −0.67±2.69D (+3.75D to −8D).The vertical and horizontal disc diameters (DD) were measured using a Haag–Streit slit lamp and 60D-, 78D-, 90D-, and Super Field lenses (Volk Optical, Mentor, USA). Afterwards the disc area was calculated by an ellipse formula (horizontal DD × vertical DD × π/4). The magnification factor given by the manufacturer was taken into account for each lens: 1.15× (60D lens), 0.93× (78D lens), 0.76× (90D lens), and 0.76× (Super Field lens), respectively. As reference for the disc size, the same eyes were examined by HRT II (Heidelberg Engineering, Heidelberg, Germany). Bland-Altman plots were used to assess the agreement between measurements obtained by indirect ophthalmoscopy and HRT.

Results

The results of the disc estimate compared with the HRT measurements were as follows: 0.119±0.51 mm2 (60D lens), 0.224±0.57 mm2 (78D lens), 0.10±0.51 mm2 (90D lens), and –0.07 s±0.47 mm2 (Super Field lens). Differences were not statistically significant for the 60D (p=0.083), 90D (p=0.147), or Super Field lenses (p=0.257). However, the difference between the 78D lens and HRT was statistically significant (Student’s t-test; P=0.004).

Conclusion

Measuring the disc size by indirect ophthalmoscopy is possible. The 90D lens showed the smallest and the 78D lens the largest deviation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Ansari-Shahrezaei S, Maar N, Biowski R, Stur M (2001) Biomicroscopic measurement of the optic disc with a high-power positive lens. Invest Ophthalmol Vis Sci 42(1): 153–157

    PubMed  CAS  Google Scholar 

  2. Ansari-Shahrezaei S, Stur M (2002) Magnification characteristic of a +90-diopter double-aspheric fundus examination lens. Invest Ophthalmol Vis Sci 43(6): 1817–1819

    PubMed  Google Scholar 

  3. Bartz-Schmidt KU, Weber J, Heimann K (1994) Validity of twodimensional data obtained with the Heidelberg Retina Tomograph as verified by direct measurements in normal optic nerve heads. Ger J Ophthalmol 3: 400–405

    PubMed  CAS  Google Scholar 

  4. Bartz-Schmidt KU, Jonescu-Cuypers CP, Thumann G et al. (1996) Effect of the contour line on cup surface using the Heidelberg retina Tomograph. Klin Monatsbl Augenheilkd 209: 292–297

    Article  PubMed  CAS  Google Scholar 

  5. Bland JM, Altman AG (1986) Statistical methods for assessing agreement between two methods of clinical measurements. Lancet 1: 307–310

    PubMed  CAS  Google Scholar 

  6. Boros AS, Jonescu-Cuypers CP, Bartz-Schmidt KU (2001) Variability of the normalised rim/disc area quotient estimated by laser scanning tomography. A comparison with conventional planimetry. Int Ophthalmol 5: 263–267

    Article  Google Scholar 

  7. Bowd C, Zangwill LM, Blumenthal EZ et al. (2002) Imaging of the optic disc and retinal nerve fiber layer: the effects of age, optic disc area, refractive error, and gender. J Opt Soc Am 19: 197–207

    Article  Google Scholar 

  8. Correnti AJ, Wollstein G, Price LL, Schuman JS (2003) Comparison of optic nerve head assessment with a digital stereoscopic camera (discam), scanning laser ophthalmoscopy, and stereophotography. Ophthalmology 8: 1499–1505

    Article  Google Scholar 

  9. Crowston JG, Hopley CR, Healey PR et al. (2004) The effect of optic disc diameter on vertical cup to disc ratio percentiles in a population based cohort: the Blue Mountains Eye Study. Br J Ophthalmol 6: 766–770

    Article  Google Scholar 

  10. Garway-Heath DF, Rudnicka AR, Lowe T et al. (1998) Measurement of optic disc size: equivalence of methods to correct for ocular magnification. Br J Ophthalmol 82(6): 643–649

    Article  PubMed  CAS  Google Scholar 

  11. Garway-Heath DF, Poinoosawmy D, Wollstein G et al. (1999) Inter- and intraobserver variation in the analysis of optic disc images: comparison of the Heidelberg retina tomograph and computer assisted planimetry. Br J Ophthalmol 83(6): 664–669

    Article  PubMed  CAS  Google Scholar 

  12. Heijl A, Mölder H (1993) Optic disc diameter influences the ability to detect glaucomatous disc damage. Acta Ophthalmol (Copenh) 71(1): 122–129

    Google Scholar 

  13. Iliev ME, Meyenberg A, Garweg JG (2006) Morphometric assessment of normal, suspect and glaucomatous optic discs with Stratus OCT and HRT II. Eye 11: 1288–1299

    Article  Google Scholar 

  14. Jonas JB, Gusek GC, Naumann GO (1988) Optic Disc, Cup and Neuroretinal Rim Size, Configuration and Correlations in Normal Eyes. Invest Ophthalmol Vis Sci 29: 1151–1158

    PubMed  CAS  Google Scholar 

  15. Jonas JB, Papastathopoulos K (1995) Ophthalmoscopic measurement of the optic disc. Ophthalmology 102(7): 1102–1106

    PubMed  CAS  Google Scholar 

  16. Jonas JB, Mardin CY, Grundler AE (1998) Comparison of measurements of neuroretinal rim area between confocal laser scanning tomography and planimetry of photographs. Br J Ophthalmol 82(4): 362–366

    Article  PubMed  CAS  Google Scholar 

  17. Jonas JB, Budde WM, Panda-Jonas S (1999) Ophthalmoscopic evaluation of the optic nerve head. Surv Ophthalmol 4: 293–320

    Article  Google Scholar 

  18. Jonas JB (2005) Optic disk size correlated with refractive error. Am J Ophthalmol 2: 346–348

    Article  Google Scholar 

  19. Littmann H (1982) Determination of the real size of an object on the fundus of the living eye. Klin Monatsbl Augenheilkd 180(4):286–289

    Article  PubMed  CAS  Google Scholar 

  20. Mardin CY, Horn F, Viestenz A et al. (2006) Healthy optic discs with large cups-a diagnostic challenge in glaucoma. Klin Monatsbl Augenheilkd 4: 308–314

    Article  Google Scholar 

  21. Miglior S, Albé E, Guareschi M et al. (2002) Intraobserver and interobserver reproducibility in the evaluation of optic disc stereometric parameters by Heidelberg Retina Tomograph. Opthalmology 109: 1072–1077

    Article  Google Scholar 

  22. Neubauer AS, Krieglstein TR, Chryssafis C et al. (2006) Comparison of optical coherence tomography and fundus photography for measuring the optic disc size. Ophthalmic Physiol Opt 1: 13–18

    Article  Google Scholar 

  23. Quigley HA, Brown AE, Morrison JD, Drance SM (1990) The size and shape of the optic disc in normal human eyes. Arch Ophthalmol 108(1): 51–57

    PubMed  CAS  Google Scholar 

  24. Ramakrishnan R, Kader MA, Budde WM (2005) Optic disc morphometry with optical coherence tomography: comparison with planimetry of fundus photographs and influence of parapapillary atrophy and pigmentary conus. Indian J Ophthalmol 53(3): 187–191

    Article  PubMed  CAS  Google Scholar 

  25. Rohrschneider K, Burk RO, Voelcker HE (1993) Comparison of two laser scanning tomography systems for three-dimensional analysis of the optic papilla. Ophthalmologe 90(6): 613–619

    PubMed  CAS  Google Scholar 

  26. Ruben S (1994) Estimation of optic disc size using indirect biomicroscopy. Br J Ophthalmol 5: 363–364

    Article  Google Scholar 

  27. Schuman JS, Wollstein G, Farra T et al. (2003) Comparision of optic nerve head measurements obtained by optical coherence tomography and confocal scanning laser ophthalmoscopy. Am J Ophthalmol 135: 504–512

    Article  PubMed  Google Scholar 

  28. Spencer AF, Sadiq SA, Pawson P, Vernon SA (1995) Vertical optic disk diameter: discrepancy between planimetric and SLO measurements. Invest Ophthalmol Vis Sci 36(5): 796–803

    PubMed  CAS  Google Scholar 

  29. Spencer AF, Vernon SA (1995) Optic disc measurement: a comparison of indirect ophthalmoscopic methods. Br J Ophthalmol 10: 910–915

    Article  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Haustein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haustein, M., Schmidt, E., Spörl, E. et al. Flächenbestimmung der Papille mittels indirekter Ophthalmoskopie. Ophthalmologe 106, 141–148 (2009). https://doi.org/10.1007/s00347-008-1774-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-008-1774-3

Schlüsselwörter

Keywords

Navigation