Skip to main content
Log in

Simplified biplanar (0–90°) fluoroscopic puncture technique for percutaneous nephrolithotomy: the learning curve

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the learning curve of the simplified fluoroscopic biplanar (0–90º) puncture technique for percutaneous nephrolithotomy.

Methods

We prospectively evaluated patients with renal stones treated with percutaneous nephrolithotomy by a single institution’s fellows employing the simplified bi-planar (0–90º) fluoroscopic puncture technique for renal access. The learning curve was assessed with the fluoroscopic screening time and the percutaneous renal puncture time. Data obtained were compared to a subset of patients operated by a senior surgeon.

Results

Eighty-nine patients were included in the study. Forty patients were operated by fellow-1, 39 by fellow-2, and 10 patients by the senior surgeon.

Demographic data of all patients between groups were homogeneous, with no difference in gender (p = 0.432), age (p = 0.92), stone volume (p = 0.78), puncture laterality (p = 0.755), and body mass index (p = 0.365). The mean puncture time was 7.5, 4, and 3.1 min for fellow-1, fellow-2, and expert, respectively. The mean fluoroscopic screening time for the puncture was 10, 11, and 5.1 s for fellow-1, fellow-2, and the expert, respectively. Stone cases, both fellows needed to complete 10 procedures to match the senior surgeon in the mean puncture time (p = 0.046); meanwhile, the fluoroscopic screening time was equal even before to complete 10 procedures.

Conclusion

This study suggests that with the simplified biplanar (0–90º) puncture technique, the fluoroscopic screening time used in the learning process is brief. A novice fellow could require to complete ten cases to flatten the learning curve treating complex stone cases, and a flat learning curve is seen since the beginning when treating simple renal stones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Türk C, Petřík A, Sarica K et al (2016) EAU guidelines on interventional treatment for urolithiasis. Eur Urol 69(3):475–482. https://doi.org/10.1016/j.eururo.2015.07.041

    Article  PubMed  Google Scholar 

  2. Assimos D, Krambeck A, Miller NL et al (2016) Surgical management of stones: American Urological Association/Endourological Society Guideline part II. J Urol 196(4):1161–1169. https://doi.org/10.1016/j.juro.2016.05.091

    Article  PubMed  Google Scholar 

  3. Preminger GM, Tiselius HG, Assimos DG, Alken P, Buck C, Gallucci M et al (2007) 2007 guideline for the management of ureteral calculi. J Urol 178:2418–2434. https://doi.org/10.1016/j.juro.2007.09.107

    Article  PubMed  Google Scholar 

  4. Wen CC, Nakada SY (2007) Treatment selection and outcomes: renal calculi. Urol Clin North Am 34:409–419. https://doi.org/10.1016/j.ucl.2007.04.005

    Article  PubMed  Google Scholar 

  5. Manzo BO, Gómez F, Figueroa A, Sanchez HM, Leal M, Emiliani E et al (2020) A new simplified biplanar (0–90°) fluoroscopic puncture technique for percutaneous nephrolithotomy. Reducing fluoroscopy without ultrasound initial experience and outcomes. Urology 140:165–170. https://doi.org/10.1016/j.urology.2020.03.002

    Article  PubMed  Google Scholar 

  6. Oo MM, Gandhi HR, Chong KT, Goh JQ, Ng KW, Hein AT et al (2018) Automated needle targeting with X-ray (ANT-X)—robot-assisted device for percutaneous nephrolithotomy (PCNL) with its first successful use in human. J Endourol. https://doi.org/10.1089/end.2018.0003

    Article  Google Scholar 

  7. Rassweiler-Seyfried MC, Rassweiler JJ, Weiss C, Müller M, Meinzer HP, Maier-Hein L et al (2020) iPad-assisted percutaneous nephrolithotomy (PCNL): a matched pair analysis compared to standard PCNL. World J Urol 38(2):447–453. https://doi.org/10.1007/s00345-019-02801-y

    Article  PubMed  Google Scholar 

  8. Taguchi K, Hamamoto S, Okada A, Tanaka Y, Sugino T, Unno R et al (2019) Robot-assisted fluoroscopy versus ultrasound-guided renal access for nephrolithotomy: a phantom model benchtop study. J Endourol 33(12):987–994. https://doi.org/10.1089/end.2019.0432

    Article  PubMed  Google Scholar 

  9. Lima E, Rodrigues PL, Mota P, Carvalho N, Dias E, Correia-Pinto J et al (2017) Ureteroscopy-assisted percutaneous kidney access made easy: first clinical experience with a novel navigation system using electromagnetic guidance (IDEAL stage 1). Eur Urol 72(4):610–616. https://doi.org/10.1016/j.eururo.2017.03.011

    Article  PubMed  Google Scholar 

  10. Li X, Liao S, Yu Y, Dai Q, Song B, Li L (2012) Stereotactic localisation system: a modified puncture technique for percutaneous nephrolithotomy. Urol Res 40(4):395–401. https://doi.org/10.1007/s00240-011-0434-2

    Article  PubMed  Google Scholar 

  11. Lazarus J, Williams J (2011) The locator: novel percutaneous nephrolithotomy apparatus to aid collecting system puncture—a preliminary report. J Endourol 25(5):747–750. https://doi.org/10.1089/end.2010.0494

    Article  PubMed  Google Scholar 

  12. Hatipoglu NK, Bodakci MN, Penbegül N, Bozkurt Y, Sancaktutar AA, Atar M, Söylemez H (2013) Monoplanar access technique for percutaneous nephrolithotomy. Urolithiasis 41(3):257–263. https://doi.org/10.1007/s00240-013-0557-8

    Article  PubMed  Google Scholar 

  13. Mues E, Gutiérrez J, Loske AM (2007) Percutaneous renal access: a simplified approach. J Endourol 21(11):1271–1275. https://doi.org/10.1089/end.2007.9887

    Article  PubMed  Google Scholar 

  14. Sharma G, Sharma A (2009) Determining site of skin puncture for percutaneous renal access using fluoroscopy-guided triangulation technique. J Endourol 23(2):193–195. https://doi.org/10.1089/end.2008.0170

    Article  PubMed  Google Scholar 

  15. Scoffone CM, Cracco CM, Cossu M, Grande S, Poggio M, Scarpa RM (2008) Endoscopic combined intrarenal surgery in Galdakao-modified supine Valdivia position: a new standard for percutaneous nephrolithotomy? Eur Urol 54(6):1393–1403. https://doi.org/10.1016/j.eururo.2008.07.073

    Article  PubMed  Google Scholar 

  16. Allen D, O’Brien T, Tiptaft R, Glass J (2005) Defining the learning curve for percutaneous nephrolithotomy. J Endourol 19(3):279–282. https://doi.org/10.1089/end.2005.19.279

    Article  PubMed  Google Scholar 

  17. Negrete-Pulido O, Molina-Torres M, Castaño-Tostado E, Loske AM, Gutiérrez-Aceves J (2010) Percutaneous renal access: the learning curve of a simplified approach. J Endourol 24(3):457–460. https://doi.org/10.1089/end.2009.0210

    Article  PubMed  Google Scholar 

  18. Budak S, Yucel C, Kisa E, Kozacioglu Z (2018) Comparison of two different renal access techniques in one-stage percutaneous nephrolithotomy: triangulation versus “eye of the needle.” Ann Saudi Med 38(3):189–193. https://doi.org/10.5144/0256-4947.2018.189

    Article  PubMed  PubMed Central  Google Scholar 

  19. Durutovic O, Dzamic Z, Milojevic B, Nikic P, Mimic A, Bumbasirevic U et al (2016) Pulsed versus continuous mode fluoroscopy during PCNL: safety and effectiveness comparison in a case series study. Urolithiasis 44(6):565–570. https://doi.org/10.1007/s00240-016-0885-6

    Article  PubMed  Google Scholar 

  20. Borofsky MS, Rivera ME, Dauw CA, Krambeck AE, Lingeman JE (2020) Electromagnetic guided percutaneous renal access outcomes among surgeons and trainees of different experience levels: a pilot study. Urology 136:266–271. https://doi.org/10.1016/j.urology.2019.08.060

    Article  PubMed  Google Scholar 

  21. Tanriverdi O, Boylu U, Kendirci M, Kadihasanoglu M, Horasanli K, Miroglu C (2007) The learning curve in the training of percutaneous nephrolithotomy. Eur Urol 52(1):206–211. https://doi.org/10.1016/j.eururo.2007.01.001

    Article  PubMed  Google Scholar 

  22. Yu W, Rao T, Li X, Ruan Y, Yuan R, Li C, Li H, Cheng F (2017) The learning curve for access creation in solo ultrasonography-guided percutaneous nephrolithotomy and the associated skills. Int Urol Nephrol 49(3):419–424. https://doi.org/10.1007/s11255-016-1492-8

    Article  PubMed  Google Scholar 

  23. Agarwal M, Agrawal MS, Jaiswal A, Kumar D, Yadav H, Lavania P (2011) Safety and efficacy of ultrasonography as an adjunct to fluoroscopy for renal access in percutaneous nephrolithotomy (PCNL). BJU Int 108(8):1346–1349. https://doi.org/10.1111/j.1464-410X.2010.10002.x

    Article  PubMed  Google Scholar 

  24. Corrales M, Doizi S, Barghouthy Y, Kamkoum H, Somani B, Traxer O (2020) Ultrasound or fluoroscopy for percutaneous nephrolithotomy access is there really a difference? A review of literature. J Endourol. https://doi.org/10.1089/end.2020.0672

    Article  PubMed  Google Scholar 

  25. Dellis AE, Skolarikos AA, Nastos K, Deliveliotis C, Varkarakis I, Mitsogiannis I et al (2018) The impact of technique standardization on total operating and fluoroscopy times in simple endourological procedures: a prospective study. J Endourol 32(8):747–752. https://doi.org/10.1089/end.2018.0265

    Article  PubMed  Google Scholar 

  26. JJ Rosette D Opondo FP Daels G Giusti A Serrano SV Kandasami CROES PCNL Study Group (2012) Categorisation of complications and validation of the Clavien score for percutaneous nephrolithotomy. Eur Urol 62(2):246–255. https://doi.org/10.1016/j.eururo.2012.03.055

    Article  Google Scholar 

  27. Papatsoris AG, Shaikh T, Patel D, Bourdoumis A, Bach C, Buchholz N et al (2012) Use of a virtual reality simulator to improve percutaneous renal access skills: a prospective study in urology trainees. Urol Int 89(2):185–190. https://doi.org/10.1159/000337530

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate all the support of the actual HRAEB’s fellows, MD Pompeyo Alarcon and Edson Flores.

Funding

This paper received no funding.

Author information

Authors and Affiliations

Authors

Contributions

MBO: protocol/project development, data collection or management, manuscript writing/editing. TJE: protocol/project development, data collection. CJD: protocol/project development, data collection. LE: data collection or management and data analysis. EE: protocol/project development, manuscript writing/editing. SF: protocol/project development. MC: protocol/project development. MI: protocol/project development. SHM: protocol/project development, manuscript writing/editing.

Corresponding author

Correspondence to B. O. Manzo.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest.

Ethical approval

The ethics committee approved the present study of the institution with the Number: CI/HRAEB/2018/28.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzo, B.O., Torres, J.E., Cabrera, J.D. et al. Simplified biplanar (0–90°) fluoroscopic puncture technique for percutaneous nephrolithotomy: the learning curve. World J Urol 39, 3657–3663 (2021). https://doi.org/10.1007/s00345-021-03669-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-021-03669-7

Keywords

Navigation