Skip to main content

Advertisement

Log in

Role of active surveillance and focal therapy in low- and intermediate-risk prostate cancers

  • Topic Paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

Low-risk prostate cancer is found in about half of newly diagnosed men subjected to PSA screening.

Methods

To define the role of active surveillance and focal therapy in low- and intermediate-risk prostate cancers, an invited international panel of practicing physicians in the field of localized prostate cancer discussed the available literature in three consecutive meetings to come to a broad interpretation of the available data.

Results

The panel (“new prostate cancer management group,” npm) agreed on the following observations. In most men with a low-volume Gleason 6 tumor, initial conservative management is appropriate. In men with a larger unifocal Gleason score 6 or 3 + 4 lesion, focal therapy, although still considered an investigational approach, appears to be a suitable option in early non-randomized comparison studies. Furthermore, in patients with multifocal small satellite Gleason 6 lesions in the presence of a larger index lesion, focal therapy of the index lesion is an option. For patients with high-grade, large-volume disease, or in young men with evidence of high-volume multifocal low-grade prostate cancer, whole-gland treatment should be considered.

Conclusion

Active surveillance is a preferred and safe option for low-risk prostate cancer. Focal therapy is still under investigation, but the available phase II data are promising. Clinical benefits must be shown in prospective trials. With improved imaging, focal therapy may be an option for patients not choosing active surveillance with low-risk disease, progression upon active surveillance or intermediate-risk cancers with a localizable lesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sakr WA et al (1994) High grade prostatic intraepithelial neoplasia (HGPIN) and prostatic adenocarcinoma between the ages of 20–69: an autopsy study of 249 cases. In Vivo 8(3):439–443

    CAS  PubMed  Google Scholar 

  2. Zlotta AR et al (2013) Prevalence of prostate cancer on autopsy: cross-sectional study on unscreened Caucasian and Asian men. J Natl Cancer Inst 105(14):1050–1058

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  4. Ahmed HU et al (2012) Do low-grade and low-volume prostate cancers bear the hallmarks of malignancy? Lancet Oncol 13(11):e509–e517

    Article  PubMed  Google Scholar 

  5. Ross HM et al (2012) Do adenocarcinomas of the prostate with Gleason score (GS) ≤6 have the potential to metastasize to lymph nodes? Am J Surg Pathol 36(9):1346–1352

    Article  PubMed Central  PubMed  Google Scholar 

  6. Eggener SE et al (2011) Predicting 15-year prostate cancer specific mortality after radical prostatectomy. J Urol 185(3):869–875

    Article  PubMed Central  PubMed  Google Scholar 

  7. Cuzick J et al (2012) Prognostic value of a cell cycle progression signature for prostate cancer death in a conservatively managed needle biopsy cohort. Br J Cancer 106(6):1095–1099

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Robinson K et al (2010) Accurate prediction of repeat prostate biopsy outcomes by a mitochondrial DNA deletion assay. Prostate Cancer Prostatic Dis 13(2):126–131

    Article  CAS  PubMed  Google Scholar 

  9. Terris MK, McNeal JE, Stamey TA (1992) Detection of clinically significant prostate cancer by transrectal ultrasound-guided systematic biopsies. J Urol 148(3):829–832

    CAS  PubMed  Google Scholar 

  10. Wolters T et al (2011) A critical analysis of the tumor volume threshold for clinically insignificant prostate cancer using a data set of a randomized screening trial. J Urol 185(1):121–125

    Article  PubMed  Google Scholar 

  11. Haffner MC et al (2013) Tracking the clonal origin of lethal prostate cancer. J Clin Invest 123(11):4918–4922

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Schroder FH et al (2012) Prostate-cancer mortality at 11 years of follow-up. N Engl J Med 366(11):981–990

    Article  PubMed  Google Scholar 

  13. Schroder FH et al (2009) Screening and prostate-cancer mortality in a randomized European study. N Engl J Med 360(13):1320–1328

    Article  PubMed  Google Scholar 

  14. Roobol MJ et al (2009) Prostate cancer mortality reduction by prostate-specific antigen-based screening adjusted for nonattendance and contamination in the European Randomised Study of Screening for Prostate Cancer (ERSPC). Eur Urol 56(4):584–591

    Article  PubMed  Google Scholar 

  15. Hugosson J et al (2010) Mortality results from the Goteborg randomised population-based prostate-cancer screening trial. Lancet Oncol 11(8):725–732

    Article  PubMed Central  PubMed  Google Scholar 

  16. Draisma G et al (2009) Lead time and overdiagnosis in prostate-specific antigen screening: importance of methods and context. J Natl Cancer Inst 101(6):374–383

    Article  PubMed Central  PubMed  Google Scholar 

  17. Vargas HA et al (2012) Magnetic resonance imaging for predicting prostate biopsy findings in patients considered for active surveillance of clinically low risk prostate cancer. J Urol 188(5):1732–1738

    Article  PubMed  Google Scholar 

  18. Bul M et al (2013) Active surveillance for low-risk prostate cancer worldwide: the PRIAS study. Eur Urol 63(4):597–603

    Article  PubMed  Google Scholar 

  19. Klotz L et al (2010) Clinical results of long-term follow-up of a large, active surveillance cohort with localized prostate cancer. J Clin Oncol 28(1):126–131

    Article  PubMed  Google Scholar 

  20. Porten SP et al (2011) Changes in prostate cancer grade on serial biopsy in men undergoing active surveillance. J Clin Oncol 29(20):2795–2800

    Article  PubMed  Google Scholar 

  21. Bill-Axelson A et al (2014) Radical prostatectomy or watchful waiting in early prostate cancer. N Engl J Med 370(10):932–942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Wilt TJ et al (2012) Radical prostatectomy versus observation for localized prostate cancer. N Engl J Med 367(3):203–213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Krakowsky Y, Loblaw A, Klotz L (2010) Prostate cancer death of men treated with initial active surveillance: clinical and biochemical characteristics. J Urol 184(1):131–135

    Article  PubMed  Google Scholar 

  24. Vickers AJ et al (2009) Systematic review of pretreatment prostate-specific antigen velocity and doubling time as predictors for prostate cancer. J Clin Oncol 27(3):398–403

    Article  PubMed Central  PubMed  Google Scholar 

  25. Loblaw A et al (2010) Comparing prostate specific antigen triggers for intervention in men with stable prostate cancer on active surveillance. J Urol 184(5):1942–1946

    Article  PubMed  Google Scholar 

  26. Andriole GL et al (2011) Role of active surveillance in the management of men with localized prostate cancer. http://consensus.nih.gov/2011/docs/prostate/ASPC_Program_and_Abstract_Book.pdf

  27. Esserman L, Thompson I (2010) Solving the overdiagnosis dilemma. J Natl Cancer Inst 102(9):582–583

    Article  PubMed  Google Scholar 

  28. Dickinson L et al (2011) Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting. Eur Urol 59(4):477–494

    Article  PubMed  Google Scholar 

  29. Sundi D et al (2013) African American men with very low-risk prostate cancer exhibit adverse oncologic outcomes after radical prostatectomy: should active surveillance still be an option for them? J Clin Oncol 31(24):2991–2997

    Article  PubMed Central  PubMed  Google Scholar 

  30. van den Bos W et al (2014) Focal therapy in prostate cancer: International multidisciplinary consensus on trial design. Eur Urol 65:1078–1083

    Article  PubMed  Google Scholar 

  31. Ahmed HU et al (2014) Can we deliver randomized trials of focal therapy in prostate cancer? Nat Rev Clin Oncol 11:482–491

    Article  CAS  PubMed  Google Scholar 

  32. Ahmed HU et al (2012) Focal therapy for localised unifocal and multifocal prostate cancer: a prospective development study. Lancet Oncol 13(6):622–632

    Article  PubMed Central  PubMed  Google Scholar 

  33. Valerio M et al (2013) The role of focal therapy in the management of localised prostate cancer: a systematic review. Eur Urol 66:732–751

    Article  PubMed  Google Scholar 

  34. Meiers I, Waters DJ, Bostwick DG (2007) Preoperative prediction of multifocal prostate cancer and application of focal therapy: review 2007. Urology 70(6 Suppl):3–8

    Article  PubMed  Google Scholar 

  35. Liu W et al (2009) Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat Med 15(5):559–565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Noguchi M et al (2003) Prognostic factors for multifocal prostate cancer in radical prostatectomy specimens: lack of significance of secondary cancers. J Urol 170(2 Pt 1):459–463

    Article  PubMed  Google Scholar 

  37. Wise AM et al (2002) Morphologic and clinical significance of multifocal prostate cancers in radical prostatectomy specimens. Urology 60(2):264–269

    Article  PubMed  Google Scholar 

  38. Bostwick DG et al (2006) Group consensus reports from the Consensus Conference on Focal Treatment of Prostatic Carcinoma, Celebration, Florida, February 24, 2006. Urology 70(6 Suppl):42–44

    Google Scholar 

  39. Mouraviev V, Mayes JM, Polascik TJ (2009) Pathologic basis of focal therapy for early-stage prostate cancer. Nat Rev Urol 6(4):205–215

    Article  PubMed  Google Scholar 

  40. Onik G, Miessau M, Bostwick DG (2009) Three-dimensional prostate mapping biopsy has a potentially significant impact on prostate cancer management. J Clin Oncol 27(26):4321–4326

    Article  PubMed  Google Scholar 

  41. Epstein JI, Steinberg GD (1990) The significance of low-grade prostate cancer on needle biopsy. A radical prostatectomy study of tumor grade, volume, and stage of the biopsied and multifocal tumor. Cancer 66(9):1927–1932

    Article  CAS  PubMed  Google Scholar 

  42. de la Rosette J et al (2010) Focal therapy in prostate cancer-report from a consensus panel. J Endourol 24(5):775–780

    Article  PubMed  Google Scholar 

  43. Rastinehad AR et al (2013) Improving detection of clinically significant prostate cancer: MRI/TRUS fusion-guided prostate biopsy. J Urol 65:1218–1219

    Google Scholar 

  44. Piagnerelli M et al (2003) Red blood cell rheology in sepsis. Intensive Care Med 29(7):1052–1061

    Article  CAS  PubMed  Google Scholar 

  45. Ashur I et al (2009) Photocatalytic generation of oxygen radicals by the water-soluble bacteriochlorophyll derivative WST11, noncovalently bound to serum albumin. J Phys Chem A 113(28):8027–8037

    Article  CAS  PubMed  Google Scholar 

  46. Rubinsky B, Onik G, Mikus P (2007) Irreversible electroporation: a new ablation modality: clinical implications. Technol Cancer Res Treat 6(1):37–48

    Article  PubMed  Google Scholar 

  47. Betrouni N et al (2011) A model to estimate the outcome of prostate cancer photodynamic therapy with TOOKAD Soluble WST11. Phys Med Biol 56(15):4771–4783

    Article  PubMed  Google Scholar 

  48. Thuroff S, Chaussy C (2013) Evolution and outcomes of 3 MHz high intensity focused ultrasound therapy for localized prostate cancer during 15 years. J Urol 190(2):702–710

    Article  PubMed  Google Scholar 

  49. Crouzet S et al (2013) Whole-gland ablation of localized prostate cancer with high-intensity focused ultrasound: oncologic outcomes and morbidity in 1002 patients. Eur Urol 65:907–914

    Article  PubMed  Google Scholar 

  50. Wenske S, Quarrier S, Katz AE (2013) Salvage cryosurgery of the prostate for failure after primary radiotherapy or cryosurgery: long-term clinical, functional, and oncologic outcomes in a large cohort at a tertiary referral centre. Eur Urol 64(1):1–7

    Article  PubMed  Google Scholar 

  51. Ellis DS, Manny TB Jr, Rewcastle JC (2007) Cryoablation as primary treatment for localized prostate cancer followed by penile rehabilitation. Urology 69(2):306–310

    Article  PubMed  Google Scholar 

  52. Chaussy CG, Thuroff SF (2011) Robotic high-intensity focused ultrasound for prostate cancer: what have we learned in 15 years of clinical use? Curr Urol Rep 12(3):180–187

    Article  PubMed  Google Scholar 

  53. Crouzet S et al (2010) Multicentric oncologic outcomes of high-intensity focused ultrasound for localized prostate cancer in 803 patients. Eur Urol 58(4):559–566

    Article  PubMed  Google Scholar 

  54. Pfeiffer D, Berger J, Gross AJ (2012) Single application of high-intensity focused ultrasound as a first-line therapy for clinically localized prostate cancer: 5-year outcomes. BJU Int 110(11):1702–1707

    Article  PubMed  Google Scholar 

  55. Blana A et al (2008) First analysis of the long-term results with transrectal HIFU in patients with localised prostate cancer. Eur Urol 53(6):1194–1201

    Article  PubMed  Google Scholar 

  56. Bahn DK et al (2002) Targeted cryoablation of the prostate: 7-year outcomes in the primary treatment of prostate cancer. Urology 60(2 Suppl 1):3–11

    Article  PubMed  Google Scholar 

  57. Chin JL et al (2012) Extended followup oncologic outcome of randomized trial between cryoablation and external beam therapy for locally advanced prostate cancer (T2c-T3b). J Urol 188(4):1170–1175

    Article  PubMed  Google Scholar 

  58. Levy DA, Pisters LL, Jones JS (2009) Primary cryoablation nadir prostate specific antigen and biochemical failure. J Urol 182(3):931–937

    Article  CAS  PubMed  Google Scholar 

  59. Cohen JK et al (2008) Ten-year biochemical disease control for patients with prostate cancer treated with cryosurgery as primary therapy. Urology 71(3):515–518

    Article  PubMed  Google Scholar 

  60. Jones JS et al (2008) Whole gland primary prostate cryoablation: initial results from the cryo on-line data registry. J Urol 180(2):554–558

    Article  PubMed  Google Scholar 

  61. Dhar N et al (2011) Primary full-gland prostate cryoablation in older men (>age of 75 years): results from 860 patients tracked with the COLD Registry. BJU Int 108(4):508–512

    Article  PubMed  Google Scholar 

  62. Ward JF, Jones JS (2012) Focal cryotherapy for localized prostate cancer: a report from the national Cryo On-Line Database (COLD) Registry. BJU Int 109(11):1648–1654

    Article  PubMed  Google Scholar 

  63. Moore CM et al (2015) Determination of optimal drug dose and light dose index to achieve minimally invasive focal ablation of localized prostate cancer using WST11-Vascular Targeted Photodynamic (VTP) therapy. BJU Int. doi:10.1111/bju.12816

  64. Azzouzi AR et al (2013) TOOKAD((R)) soluble vascular-targeted photodynamic (VTP) therapy: determination of optimal treatment conditions and assessment of effects in patients with localised prostate cancer. BJU Int 112(6):766–774

    Article  CAS  PubMed  Google Scholar 

  65. Sooriakumaran P et al (2014) Comparative effectiveness of radical prostatectomy and radiotherapy in prostate cancer: observational study of mortality outcomes. BMJ 348:g1502

    Article  PubMed Central  PubMed  Google Scholar 

  66. Nepple KG et al (2013) Mortality after prostate cancer treatment with radical prostatectomy, external-beam radiation therapy, or brachytherapy in men without comorbidity. Eur Urol 64(3):372–378

    Article  PubMed Central  PubMed  Google Scholar 

  67. Kibel AS et al (2012) Survival among men with clinically localized prostate cancer treated with radical prostatectomy or radiation therapy in the prostate specific antigen era. J Urol 187(4):1259–1265

    Article  PubMed  Google Scholar 

  68. Zelefsky MJ et al (2010) Metastasis after radical prostatectomy or external beam radiotherapy for patients with clinically localized prostate cancer: a comparison of clinical cohorts adjusted for case mix. J Clin Oncol 28(9):1508–1513

    Article  PubMed Central  PubMed  Google Scholar 

  69. Klotz L (2013) Active surveillance: patient selection. Curr Opin Urol 23(3):239–244

    PubMed  Google Scholar 

  70. Ross AE et al (2011) Gene expression pathways of high grade localized prostate cancer. Prostate 71:1568–1577

    CAS  PubMed  Google Scholar 

  71. Skacel M et al (2001) Aneusomy of chromosomes 7, 8, and 17 and amplification of HER-2/neu and epidermal growth factor receptor in Gleason score 7 prostate carcinoma: a differential fluorescent in situ hybridization study of Gleason pattern 3 and 4 using tissue microarray. Hum Pathol 32(12):1392–1397

    Article  CAS  PubMed  Google Scholar 

  72. Padar A et al (2003) Inactivation of cyclin D2 gene in prostate cancers by aberrant promoter methylation. Clin Cancer Res 9(13):4730–4734

    CAS  PubMed  Google Scholar 

  73. Susaki E, Nakayama KI (2007) Multiple mechanisms for p27(Kip1) translocation and degradation. Cell Cycle 6(24):3015–3020

    Article  CAS  PubMed  Google Scholar 

  74. Guo Y et al (1997) Loss of the cyclin-dependent kinase inhibitor p27(Kip1) protein in human prostate cancer correlates with tumor grade. Clin Cancer Res 3(12 Pt 1):2269–2274

    CAS  PubMed  Google Scholar 

  75. True L et al (2006) A molecular correlate to the Gleason grading system for prostate adenocarcinoma. Proc Natl Acad Sci USA 103(29):10991–10996

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Wang J et al (2006) Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res 66(17):8347–8351

    Article  CAS  PubMed  Google Scholar 

  77. Furusato B et al (2008) Mapping of TMPRSS2–ERG fusions in the context of multi-focal prostate cancer. Mod Pathol 21(2):67–75

    CAS  PubMed  Google Scholar 

  78. Bismar TA et al (2012) ERG protein expression reflects hormonal treatment response and is associated with Gleason score and prostate cancer specific mortality. Eur J Cancer 48(4):538–546

    Article  CAS  PubMed  Google Scholar 

  79. West AF et al (2001) Correlation of vascular endothelial growth factor expression with fibroblast growth factor-8 expression and clinico-pathologic parameters in human prostate cancer. Br J Cancer 85(4):576–583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Erbersdobler A et al (2010) Prognostic value of microvessel density in prostate cancer: a tissue microarray study. World J Urol 28(6):687–692

    Article  PubMed  Google Scholar 

  81. Tomlins SA et al (2007) Integrative molecular concept modeling of prostate cancer progression. Nat Genet 39(1):41–51

    Article  CAS  PubMed  Google Scholar 

  82. Dall’Era MA et al (2008) Active surveillance for the management of prostate cancer in a contemporary cohort. Cancer 112(12):2664–2670

    Article  PubMed  Google Scholar 

  83. Kakehi Y et al (2008) Prospective evaluation of selection criteria for active surveillance in Japanese patients with stage T1cN0M0 prostate cancer. Jpn J Clin Oncol 38(2):122–128

    Article  PubMed  Google Scholar 

  84. Carter HB et al (2007) Expectant management of prostate cancer with curative intent: an update of the Johns Hopkins experience. J Urol 178(6):2359–2364

    Article  PubMed Central  PubMed  Google Scholar 

  85. Roemeling S et al (2007) Active surveillance for prostate cancers detected in three subsequent rounds of a screening trial: characteristics, PSA doubling times, and outcome. Eur Urol 51(5):1244–1250

    Article  PubMed  Google Scholar 

  86. Soloway MS et al (2008) Active surveillance; a reasonable management alternative for patients with prostate cancer: the Miami experience. BJU Int 101(2):165–169

    PubMed  Google Scholar 

  87. Hardie C et al (2005) Early outcomes of active surveillance for localized prostate cancer. BJU Int 95(7):956–960

    Article  PubMed  Google Scholar 

  88. Patel MI et al (2004) An analysis of men with clinically localized prostate cancer who deferred definitive therapy. J Urol 171(4):1520–1524

    Article  PubMed  Google Scholar 

  89. Crouzet S et al (2014) High-intensity focused ultrasound as focal therapy of prostate cancer. Curr Opin Urol 24(3):225–230

    Article  PubMed  Google Scholar 

  90. Dickinson L et al (2013) Image-directed, tissue-preserving focal therapy of prostate cancer: a feasibility study of a novel deformable magnetic resonance–ultrasound (MR–US) registration system. BJU Int 112(5):594–601

    Article  PubMed Central  PubMed  Google Scholar 

  91. Dickinson L et al (2013) A multi-centre prospective development study evaluating focal therapy using high intensity focused ultrasound for localised prostate cancer: the INDEX study. Contemp Clin Trials 36(1):68–80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Bahn D et al (2012) Focal cryotherapy for clinically unilateral, low-intermediate risk prostate cancer in 73 men with a median follow-up of 3.7 years. Eur Urol 62(1):55–63

    Article  PubMed  Google Scholar 

  93. Barqawi AB et al (2014) Targeted focal therapy in the management of organ-confined prostate cancer. J Urol 192:749–753

    Article  PubMed  Google Scholar 

  94. Onik G, Mikus P, Rubinsky B (2007) Irreversible electroporation: implications for prostate ablation. Technol Cancer Res Treat 6(4):295–300

    Article  PubMed  Google Scholar 

  95. Kovacs G, Cosset JM, Carey B (2014) Focal radiotherapy as focal therapy of prostate cancer. Curr Opin Urol 24(3):231–235

    Article  PubMed  Google Scholar 

  96. Cosset JM et al (2013) Focal brachytherapy for selected low-risk prostate cancers: a pilot study. Brachytherapy 12(4):331–337

    Article  PubMed  Google Scholar 

  97. Raz O et al (2010) Real-time magnetic resonance imaging-guided focal laser therapy in patients with low-risk prostate cancer. Eur Urol 58(1):173–177

    Article  PubMed  Google Scholar 

  98. Lindner U et al (2010) Focal laser ablation for prostate cancer followed by radical prostatectomy: validation of focal therapy and imaging accuracy. Eur Urol 57(6):1111–1114

    Article  PubMed  Google Scholar 

  99. Marien A et al (2014) Target ablation-image-guided therapy in prostate cancer. Urol Oncol 32:912–923

    Article  PubMed  Google Scholar 

  100. McCulloch P et al (2009) No surgical innovation without evaluation: the IDEAL recommendations. Lancet 374(9695):1105–1112

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The consensus meetings were made possible by support of STEBA Biotech.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henk van der Poel.

Additional information

Henk van der Poel and Klotz are co-sharing first authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Poel, H., Klotz, L., Andriole, G. et al. Role of active surveillance and focal therapy in low- and intermediate-risk prostate cancers. World J Urol 33, 907–916 (2015). https://doi.org/10.1007/s00345-015-1603-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-015-1603-7

Keywords

Navigation