Skip to main content

Advertisement

Log in

Suppression of renal TRPM7 may alleviate kidney injury in the renal transplantation

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to investigate the effect of renal cortex transient receptor potential melastatin 7 (TRPM7) suppression on renal ischemia reperfusion injury induced by transplantation in mice.

Methods

M7shRNA was used to decrease the expression of TRPM7 in NRK-52e cells. The mice were subjected to renal intra-parenchymal injection with lentivirus containing M7shRNA to produce hypo-expression of TRPM7 in renal cortex. Cell hypoxia mode and syngeneic renal transplantation in vivo were established. Then the effects of M7shRNA were measured by fluorescent probe for reactive oxygen species (ROS), intracellular calcium and magnesium; Western blot was applied for p38-MAPKs and Bax expression in cell studies. In vivo studies, mice were killed 24 h, 48 h, 72 h, 7 days and 21 days, respectively, after transplantation and the kidneys were dissected. Serum creatinine was measured, and the H&E, Masson’s trichrome staining, TUNEL, Kim-1 and α-smooth muscle actin were used to evaluate pathological change.

Results

In cell model of hypoxia, the level of ROS in NRK-52e-M7shRNA was significantly lower than that in both NRK-52e and NRK-52e control cells, while the activation of p38-MAPKs was limited. In renal transplanted mice, renal function of M7shRNA group was conspicuously better than PBS- and vector-control-treated group. The histological examination showed that renal tubule injury and interstitial fibrosis were lower in M7shRNA-treated group compared with PBS and vector-control group.

Conclusions

Suppression of renal cortex TRPM7 could alleviate kidney injury induced by transplantation in mice. The mechanism may involve reducing the early stage of ischemia reperfusion injury by inhibition of intracellular Ca2+, Mg2+ and ROS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jones DR, Lee HT (2007) Protecting the kidney during critical illness. Curr Opin Anaesthesiol 20:106–112

    Article  PubMed  Google Scholar 

  2. Tang IY, Murray PT (2004) Prevention of perioperative acute renal failure: what works? Best Pract Res Clin Anaesthesiol 18:91–111

    Article  PubMed  CAS  Google Scholar 

  3. Chapman JR, O’Connell PJ, Nankivell BJ (2005) Chronic renal allograft dysfunction. J Am Soc Nephrol 16:3015–3026

    Article  PubMed  Google Scholar 

  4. Schwarz A, Mengel M, Gwinner W, Radermacher J, Hiss M, Kreipe H et al (2005) Risk factors for chronic allograft nephropathy after renal transplantation: a protocol biopsy study. Kidney Int 67:341–348

    Article  PubMed  Google Scholar 

  5. Gulati P and Singh N (2013) Neuroprotective effect of tadalafil, a PDE-5 inhibitor, and its modulation by L-NAME in mouse model of ischemia-reperfusion injury. J Surg Res

  6. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ et al (2001) LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411:590–595

    Article  PubMed  CAS  Google Scholar 

  7. Runnels LW, Yue L, Clapham DE (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291:1043–1047

    Article  PubMed  CAS  Google Scholar 

  8. Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W et al (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115:863–877

    Article  PubMed  CAS  Google Scholar 

  9. Su LT, Chen HC, Gonzalez-Pagan O, Overton JD, Xie J, Yue L et al (2010) TRPM7 activates m-calpain by stress-dependent stimulation of p38 MAPK and c-Jun N-terminal kinase. J Mol Biol 396:858–869

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Chen HC, Su LT, Gonzalez-Pagan O, Overton JD, Runnels LW (2012) A key role for Mg2+ in TRPM7′s control of ROS levels during cell stress. Biochemical Journal 445:441–448

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Gutteridge JM, Halliwell B (1992) Comments on review of free radicals in biology and medicine, second edition, by Barry Halliwell and John M. C. Gutteridge. Free Radic Biol Med 12:93–95

    Article  PubMed  CAS  Google Scholar 

  12. Meng Z, Wang X, Yang Z, Xiang F (2012) Expression of transient receptor potential melastatin 7 up-regulated in the early stage of renal ischemia-reperfusion. Transplant Proc 44:1206–1210

    Article  PubMed  CAS  Google Scholar 

  13. Lange C, Togel F, Ittrich H, Clayton F, Nolte-Ernsting C, Zander AR et al (2005) Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats. Kidney Int 68:1613–1617

    Article  PubMed  Google Scholar 

  14. Wei WL, Sun HS, Olah ME, Sun X, Czerwinska E, Czerwinski W et al (2007) TRPM7 channels in hippocampal neurons detect levels of extracellular divalent cations. Proc Natl Acad Sci USA 104:16323–16328

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Sun HS, Jackson MF, Martin LJ, Jansen K, Teves L, Cui H et al (2009) Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat Neurosci 12:1300–1307

    Article  PubMed  CAS  Google Scholar 

  16. Kim M, Chen SW, Park SW, Kim M, D’Agati VD, Yang J et al (2009) Kidney-specific reconstitution of the A1 adenosine receptor in A1 adenosine receptor knockout mice reduces renal ischemia-reperfusion injury. Kidney Int 75:809–823

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Su LT, Agapito MA, Li M, Simonson WT, Huttenlocher A, Habas R et al (2006) TRPM7 regulates cell adhesion by controlling the calcium-dependent protease calpain. J Biol Chem 281:11260–11270

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Chen C, Peng J, Xia HS, Yang GF, Wu QS, Chen LD et al (2009) Quantum dots-based immunofluorescence technology for the quantitative determination of HER2 expression in breast cancer. Biomaterials 30:2912–2918

    Article  PubMed  CAS  Google Scholar 

  19. Siedlecki AM, Jin X, Thomas W, Hruska KA, Muslin AJ (2011) RGS4, a GTPase activator, improves renal function in ischemia-reperfusion injury. Kidney Int 80:263–271

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Vieira JM Jr, Mantovani E, Rodrigues LT, Delle H, Noronha IL, Fujihara CK et al (2005) Simvastatin attenuates renal inflammation, tubular transdifferentiation and interstitial fibrosis in rats with unilateral ureteral obstruction. Nephrol Dial Transplant 20:1582–1591

    Article  PubMed  Google Scholar 

  21. Jablonski P, Howden BO, Rae DA, Birrell CS, Marshall VC, Tange J (1983) An experimental model for assessment of renal recovery from warm ischemia. Transplantation 35:198–204

    Article  PubMed  CAS  Google Scholar 

  22. Kakuta Y, Okumi M, Isaka Y, Tsutahara K, Abe T, Yazawa K et al (2011) Epigallocatechin-3-gallate protects kidneys from ischemia reperfusion injury by HO-1 upregulation and inhibition of macrophage infiltration. Transpl Int 24:514–522

    Article  PubMed  CAS  Google Scholar 

  23. Brinkkoetter PT, Song H, Losel R, Schnetzke U, Gottmann U, Feng Y et al (2008) Hypothermic injury: the mitochondrial calcium, ATP and ROS love-hate triangle out of balance. Cell Physiol Biochem 22:195–204

    Article  PubMed  CAS  Google Scholar 

  24. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287:C817–C833

    Article  PubMed  CAS  Google Scholar 

  25. Zhou H, Clapham DE (2009) Mammalian MagT1 and TUSC3 are required for cellular magnesium uptake and vertebrate embryonic development. Proc Natl Acad Sci USA 106:15750–15755

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Uehara T, Peng XX, Bennett B, Satoh Y, Friedman G, Currin R (2004) c-Jun N-terminal kinase mediates hepatic injury after rat liver transplantation. Transplantation 78:324–332

    Article  PubMed  CAS  Google Scholar 

  27. Clanachan AS, Jaswal JS, Gandhi M, Bottorff DA, Coughlin J, Finegan BA et al (2003) Effects of inhibition of myocardial extracellular-responsive kinase and P38 mitogen-activated protein kinase on mechanical function of rat hearts after prolonged hypothermic ischemia. Transplantation 75:173–180

    Article  PubMed  CAS  Google Scholar 

  28. Wykes RC, Lee M, Duffy SM, Yang W, Seward EP, Bradding P (2007) Functional transient receptor potential melastatin 7 channels are critical for human mast cell survival. J Immunol 179:4045–4052

    Article  PubMed  CAS  Google Scholar 

  29. Mackins CJ, Kano S, Seyedi N, Schafer U, Reid AC, Machida T et al (2006) Cardiac mast cell-derived renin promotes local angiotensin formation, norepinephrine release, and arrhythmias in ischemia/reperfusion. J Clin Invest 116:1063–1070

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Vural KM, Liao H, Oz MC, Pinsky DJ (2000) Effects of mast cell membrane stabilizing agents in a rat lung ischemia-reperfusion model. Ann Thorac Surg 69:228–232

    Article  PubMed  CAS  Google Scholar 

  31. Abonia JP, Friend DS, Austen WG Jr, Moore FD Jr, Carroll MC, Chan R et al (2005) Mast cell protease 5 mediates ischemia-reperfusion injury of mouse skeletal muscle. J Immunol 174:7285–7291

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Middelbeek J, Kuipers AJ, Henneman L, Visser D, Eidhof I, van Horssen R et al (2012) TRPM7 is required for breast tumor cell metastasis. Cancer Res 72:4250–4261

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Loren Runnels for his great assistance. The study was supported by grants from the National Natural Science Foundation of China (No.81172734 and No. 81202027) and Fundamental Research Funds for the Central Universities (No. 2012303020211).

Conflict of interests

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghuan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, Z., Cao, R., Wang, Y. et al. Suppression of renal TRPM7 may alleviate kidney injury in the renal transplantation. World J Urol 32, 1303–1311 (2014). https://doi.org/10.1007/s00345-013-1208-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-013-1208-y

Keywords

Navigation