Skip to main content
Log in

Docetaxel and bortezomib downregulate Bcl-2 and sensitize PC-3-Bcl-2 expressing prostate cancer cells to irradiation

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Background

Currently, docetaxel is used to treat hormone-refractory metastatic prostate cancer. Docetaxel not only inhibits microtubule formation but can also downregulate expression of Bcl-2, a known antiapoptotic oncogene. Furthermore, the 26S proteasome inhibitor bortezomib can downregulate Bcl-2 expression. Previously, we demonstrated that overexpression of Bcl-2 renders cells resistant to radiation therapy. In this study, we investigated whether treating human prostate cancer cells with docetaxel, bortezomib, or both could modulate Bcl-2 expression and whether such modulation could render Bcl-2-overexpressing cells more susceptible to radiation.

Methods

PC-3-Bcl-2 and PC-3-Neo human prostate cancer cells treated with docetaxel and/or bortezomib in addition to irradiation were analyzed in vitro for proliferation, clonogenic survival, cell cycle phase distribution, and expression of Bcl-2 and Bcl-xL proteins.

Results

Docetaxel and bortezomib alone had significant cytotoxic effects. In addition, docetaxel, bortezomib, or radiation resulted in a G2M phase arrest in PC-3-Bcl-2, whereas only docetaxel or radiation did so in PC-3-Neo cells. Both cell lines were more sensitized to radiation’s killing effects when treated with the combination of docetaxel and bortezomib than when treated with either agent alone. Furthermore, docetaxel and bortezomib-treated cells exhibited marked changes in the expression of Bcl-2 and Bcl-xL.

Conclusions

This is the first study to demonstrate that docetaxel and bortezomib in combination can effectively sensitize Bcl-2-overexpressing human prostate cancer cells to radiation effects by modulating the expression of key members of the Bcl-2 family. Together, these findings warrant further evaluation of the combination of docetaxel and bortezomib in prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E et al (2007) Cancer statistics. CA Cancer J Clin 57:43–66

    Article  PubMed  Google Scholar 

  2. Merrill RM, Brawley OW (1997) Prostate cancer incidence and mortality rates among white and black men. Epidemiology 8:126–131

    Article  PubMed  CAS  Google Scholar 

  3. Shipley WU, Verhey LJ, Munzenrider JE et al (1995) Advanced prostate cancer: the results of a randomized comparative trial of high dose irradiation boosting with conformal protons compared with conventional dose irradiation using photons alone. Int J Radat Oncol Biol Phys 32:3–12

    Article  CAS  Google Scholar 

  4. Pollack A, Zagars GK, Starkschall G et al (1996) Conventional vs. conformal radiotherapy for prostate cancer. Preliminary results of dosimetry and acute toxicity. Int J Radiat Oncol Biol Phys 34:555–564

    PubMed  CAS  Google Scholar 

  5. Bagshaw MA, Kaplan ID, Cox RC (1993) Prostate cancer. Radiation therapy for localized disease. Cancer 71:939–952

    Article  PubMed  CAS  Google Scholar 

  6. Pollack A, Zagars GK, Smith LG et al (2000) Preliminary results of a randomized radiotherapy dose-escalation study comparing 70 Gy with 78 Gy for prostate cancer. J Clin Oncol 18:3904–3911

    PubMed  CAS  Google Scholar 

  7. Pilepich MV, Perez CA, Walz BJ et al (1981) Complications of definitive radiotherapy for carcinoma of the prostate. Int. J Radiat Oncol Biol Phys 7:1341–1348

    PubMed  CAS  Google Scholar 

  8. Shipley WU, Zietman AL, Hanks GE et al (1994) Treatment-related sequelae following external beam radiation for prostate cancer: a review with an update in patients with stage T1 and T2 tumors. J Urol 152:1799–1805

    PubMed  CAS  Google Scholar 

  9. An J, Chervin AS, Nie A et al (2007) Overcoming the radioresistance of prostate cancer cells with a novel Bcl-2 inhibitor. Oncogene 26:652–661

    Article  PubMed  CAS  Google Scholar 

  10. Mackey TJ, Borkowski A, Amin P et al (1998) bcl-2/bax ratio as a predictive marker for therapeutic response to radiotherapy in patients with prostate cancer. Urology 52:1085–1090

    Article  PubMed  CAS  Google Scholar 

  11. Rakozy C, Grignon DJ, Sarkar FH et al (1998) Expression of bcl-2, p53, and p21 in benign and malignant prostatic tissue before and after radiation therapy. Mod Pathol 11:892–899

    PubMed  CAS  Google Scholar 

  12. Grossfeld GD, Olumi AF, Connolly JA et al (1998) Locally recurrent prostate tumors following either radiation therapy or radical prostatectomy have changes in Ki-67 labeling index, p53 and bcl-2 immunoreactivity. J Urol 159:1437–1443

    Article  PubMed  CAS  Google Scholar 

  13. Huang A, Gandour-Edwards R, Rosenthal SA et al (1998) p53 and bcl-2 immunohistochemical alterations in prostate cancer treated with radiation therapy. Urology 51:346–351

    Article  PubMed  CAS  Google Scholar 

  14. Tannock IF, de Wit R, Berry WR et al (2004) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351:1502–1512

    Article  PubMed  CAS  Google Scholar 

  15. Petrylak DP, Tangen CM, Hussain MH et al (2007) Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 351:1513–1520

    Article  Google Scholar 

  16. Kraus LA, Samuel SK, Schmid SM et al (2003) The mechanism of action of docetaxel (Taxotere) in xenograft models is not limited to bcl-2 phosphorylation. Invest New Drugs 21:259–268

    Article  PubMed  CAS  Google Scholar 

  17. Fennell DA, Chacko A, Mutti L (2008) BCL-2 family regulation by the 20S proteasome inhibitor bortezomib. Oncogene 27(9):1189–1197

    Article  PubMed  CAS  Google Scholar 

  18. Rosser CJ, Tanaka M, Pisters LL et al (2004) Adenoviral-mediated PTEN transgene expression sensitizes Bcl-2-expressing prostate cancer cells to radiation. Cancer Gene Ther 11:273–279

    Article  PubMed  CAS  Google Scholar 

  19. Tanaka M, Rosser CJ, Grossman HB (2005) PTEN gene therapy induces growth inhibition and increases efficacy of chemotherapy in prostate cancer. Cancer Detect Prev 29:170–174

    Article  PubMed  CAS  Google Scholar 

  20. Anai S, Goodison S, Shiverick K et al (2007) Knock-down of Bcl-2 by antisense oligodeoxynucleotides induces radiosensitization and inhibition of angiogenesis in human PC-3 prostate tumor xenografts. Mol Cancer Ther 6:101–111

    Article  PubMed  CAS  Google Scholar 

  21. Rosser CJ, Reyes AO, Vakar-Lopez F et al (2003) Bcl-2 is significantly overexpressed in localized radio-recurrent prostate carcinoma, compared with localized radio-naive prostate carcinoma. Int J Radiat Oncol Biol Phys 56:1–6

    PubMed  CAS  Google Scholar 

  22. Fernandez A, Udagawa T, Schwesinger C, Beecken W, Achilles-Gerte E, McDonnell T et al (2001) Angiogenic potential of prostate carcinoma cells overexpressing bcl-2. J Natl Cancer Inst 93:208–213

    Article  PubMed  CAS  Google Scholar 

  23. Pollack A, Cowen D, Troncoso P et al (2003) Molecular markers of outcome after radiotherapy in patients with prostate carcinoma: Ki-67, bcl-2, bax, and bcl-x. Cancer 97:1630–1638

    Article  PubMed  Google Scholar 

  24. D’Amico AV, Whittington R et al (1998) Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280:969–974

    Article  PubMed  CAS  Google Scholar 

  25. Pollack A, Zagars GK, Starkschall G et al (2002) Prostate cancer radiation dose response: results of the M. D. Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys 53:1097–1105

    Google Scholar 

  26. Zelefsky MJ, Fuks Z, Wolfe T et al (1998) Locally advanced prostatic cancer: long-term toxicity outcome after three-dimensional conformal radiation therapy—a dose-escalation study. Radiology 209:169–174

    PubMed  CAS  Google Scholar 

  27. Yvon AC, Wadsworth P, Jordan MA (1999) Taxol suppresses dynamics of individual microtubules in living human tumor cells. Am Soc Cell Biol 10:947–959

    CAS  Google Scholar 

  28. Lyseng-Williamson KA, Fenton C (2005) Docetaxel: a review of its use in metastatic breast cancer. Drugs 65:2513–2531

    Article  PubMed  CAS  Google Scholar 

  29. Jones SE, Savin MA, Holmes FA et al (2006) Phase III trial comparing doxorubicin plus cyclophosphamide with docetaxel plus cyclophosphamide as adjuvant therapy for operable breast cancer. J Clin Oncol 24:5381–5387

    Article  PubMed  CAS  Google Scholar 

  30. Russo SM, Tepper JE, Baldwin AS Jr, Liu R, Adams J, Elliott P, Cusack JC Jr (2001) Enhancement of radiosensitivity by proteasome inhibition: implications for a role of NF-kappaB. Int J Radiat Oncol Biol Phys 50:183–193

    PubMed  CAS  Google Scholar 

  31. Zamzami N, Brenner C, Marzo I et al (1998) Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins. Oncogene 16:2265–2282

    Article  PubMed  CAS  Google Scholar 

  32. Bolla M, Collette L, Blank L, Warde P et al (2002) Long-term results with immediate androgen suppression and external irradiation in patients with locally advanced prostate cancer (an EORTC study): a phase III randomised trial. Lancet 360:103–106

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles J. Rosser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, W., Shiverick, K.T., Namiki, K. et al. Docetaxel and bortezomib downregulate Bcl-2 and sensitize PC-3-Bcl-2 expressing prostate cancer cells to irradiation. World J Urol 26, 509–516 (2008). https://doi.org/10.1007/s00345-008-0289-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-008-0289-5

Keywords

Navigation