Skip to main content

Advertisement

Log in

Challenges of using mass spectrometry as a bladder cancer biomarker discovery platform

  • Topic Paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Introduction

Bladder cancer (BCa) is one of the most prevalent malignancies worldwide, mostly due to its high recurrence rates. In consequence, the necessity of repeated screening for reappearance demonstrates the urgent need for novel biomarkers as alternatives to invasive standard procedures.

Methods

Proteomic technologies have emerged as powerful platforms for unbiased biomarker discovery and revolutionized the classical “target-driven” analysis of single marker candidates. Although proteome profiling is still far from demonstrating its full potential in clinical diagnosis, first studies clearly denote its significant potential.

Conclusions

This review provides a discussion of the challenges related to clinical proteomics using mass spectrometry, emphasizing bladder cancer biomarker discovery. An outline of the technological prerequisites for reliable proteome profiling, data mining and interpretation, as well as, reflections on future trends in the field are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pisani P, Parkin DM, Bray F, Ferlay J (1999) Estimates of the worldwide mortality from 25 cancers in 1990. Int J Cancer 83:18–29

    Article  PubMed  CAS  Google Scholar 

  2. Aben KK, Kiemeney LA (1999) Epidemiology of bladder cancer. Eur Urol 36:660–672

    Article  PubMed  Google Scholar 

  3. Eissa S, Kassim S, El-Ahmady O (2003) Detection of bladder tumours: role of cytology, morphology-based assays, biochemical and molecular markers. Curr Opin Obstet Gynecol 15:395–403

    Article  PubMed  Google Scholar 

  4. Bailey MJ (2003) Urinary markers in bladder cancer. BJU Int 91:772–773

    Article  PubMed  CAS  Google Scholar 

  5. Cajulis RS, Haines GK III, Frias-Hidvegi D, McVary K, Bacus JW (1995) Cytology, flow cytometry, image analysis, and interphase cytogenetics by fluorescence in situ hybridization in the diagnosis of transitional cell carcinoma in bladder washes: a comparative study. Diagn Cytopathol 13:214–223

    Article  PubMed  CAS  Google Scholar 

  6. Omenn GS, States DJ, Adamski M, Blackwell TW, Menon R, Hermjakob H, Apweiler R, Haab BB, Simpson RJ, Eddes JS, Kapp EA, Moritz RL, Chan DW, Rai AJ, Admon A, Aebersold R, Eng J, Hancock WS, Hefta SA, Meyer H, Paik YK, Yoo JS, Ping P, Pounds J, Adkins J, Qian X, Wang R, Wasinger V, Wu CY, Zhao X, Zeng R, Archakov A, Tsugita A, Beer I, Pandey A, Pisano M, Andrews P, Tammen H, Speicher DW, Hanash SM (2005) Overview of the HUPO plasma proteome project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3,020 proteins and a publicly-available database. Proteomics 5:3226–3245

    Article  PubMed  CAS  Google Scholar 

  7. Thongboonkerd V (2007) Practical points in urinary proteomics. J Proteome Res 6(10):3881–3890

    Article  PubMed  CAS  Google Scholar 

  8. Kaiser T, Hermann A, Kielstein J.T., Wittke S, Bartel S, Krebs R, Hausadel F, Hillmann M, Golovko I, Koester P, Haller H, Weissinger EM, Fliser D, Mischak H (2003) Capillary electrophoresis coupled to mass spectrometry to establish polypeptide patterns in dialysis fluids. J Chromatogr A 1013:157–171

    Article  PubMed  CAS  Google Scholar 

  9. Wittke S, Fliser D, Haubitz M, Bartel S, Krebs R, Hausadel F, Hillmann M, Golovko I, Koester P, Haller H, Kaiser T, Mischak H, Weissinger EM (2003) Determination of peptides and proteins in human urine with capillary electrophoresis–mass spectrometry, a suitable tool for the establishment of new diagnostic markers. J Chromatogr A 1013:173–181

    Article  PubMed  CAS  Google Scholar 

  10. Kolch W, Neususs C, Pelzing M, Mischak H (2005) Capillary electrophoresis-mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery. Mass Spectrom Rev 24:959–977

    Article  PubMed  CAS  Google Scholar 

  11. Zurbig P, Renfrow M.B., Schiffer E, Novak J, Walden M, Wittke S., Just I, Pelzing M, Neususs C, Theodorescu D, Root C, Ross M, Mischak H (2006) Biomarker discovery by CE-MS enables sequence analysis via MS/MS with platform-independent separation. Electrophoresis 27:2111–2125

    Article  PubMed  CAS  Google Scholar 

  12. Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49:1041–1044

    Article  PubMed  CAS  Google Scholar 

  13. Chalmers MJ, Mackay CL, Hendrickson CL, Wittke S, Walden M, Mischak H, Fliser D, Just I, Marshall AG (2005) Combined top-down and bottom-up mass spectrometric approach to characterization of biomarkers for renal disease. Anal Chem 77:7163–7171

    Article  PubMed  CAS  Google Scholar 

  14. Coon JJ, Ueberheide B, Syka JE, Dryhurst DD, Ausio J, Shabanowitz J, Hunt DF (2005) Protein identification using sequential ion/ion reactions and tandem mass spectrometry. Proc Natl Acad Sci USA 102:9463–9468

    Article  PubMed  CAS  Google Scholar 

  15. Good DM, Coon JJ (2006) Advancing proteomics with ion/ion chemistry. Biotechniques 40:783–789

    PubMed  CAS  Google Scholar 

  16. Neuhoff N, Kaiser T, Wittke S, Krebs R, Pitt A, Burchard A, Sundmacher A, Schlegelberger B, Kolch W, Mischak H (2004) Mass spectrometry for the detection of differentially expressed proteins: a comparison of surface-enhanced laser desorption/ionization and capillary electrophoresis/mass spectrometry. Rapid Commun Mass Spectrom 18:149–156

    Article  PubMed  CAS  Google Scholar 

  17. Weissinger EM, Wittke S, Kaiser T, Haller H, Bartel S, Krebs R, Golovko I, Rupprecht HD, Haubitz M, Hecker H, Mischak H, Fliser D (2004) Proteomic patterns established with capillary electrophoresis and mass spectrometry for diagnostic purposes. Kidney Int 65:2426–2434

    Article  PubMed  CAS  Google Scholar 

  18. Theodorescu D, Fliser D, Wittke S, Mischak H, Krebs R, Walden M, Ross M, Eltze E, Bettendorf O, Wulfing C, Semjonow A (2005) Pilot study of capillary electrophoresis coupled to mass spectrometry as a tool to define potential prostate cancer biomarkers in urine. Electrophoresis 26:2797–2808

    Article  PubMed  CAS  Google Scholar 

  19. Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1:252–262

    Article  PubMed  CAS  Google Scholar 

  20. Haoudi A, Bensmail H (2006) Bioinformatics and data mining in proteomics. Expert Rev Proteomics 3:333–343

    Article  PubMed  CAS  Google Scholar 

  21. Girolami M, Rogers S (2006) Variational Bayesian multinomial probit regression with Gaussian process priors. Neural Comput 18:1790–1817

    Article  Google Scholar 

  22. Girolami M, Mischak H, Krebs R (2007) Analysis of complex, multidimensional datasets. Drug Discov Today: Technol 3:12–19

    Google Scholar 

  23. Breimann L, Friemann J, Olshen RA, Stone JC (1984) Classification and regression trees, Wadsworth

  24. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Knowl Discov Data Mining 2:121–167

    Article  Google Scholar 

  25. Rasmussen CE, Williams CKI (2006) Gaussian Processes for Machine Learning, MIT Press

  26. Mischak H, Apweiler R, Banks RE, Conaway M, Coon JJ, Dominizak A, Ehrich JH, Fliser D, Girolami M, Hermjakob H, Hochstrasser DF, Jankowski V, Julian BA, Kolch W, Massy Z, Neususs C, Novak J, Peter K, Rossing K, Schanstra JP, Semmes OJ, Theodorescu D, Thongboonkerd V, Weissinger EM, Van Eyk JE, Yamamoto T (2007) Clinical proteomics: a need to define the field and to begin to set adequate standards. Proteomics—Clin Appl 1:148–156

    Article  CAS  Google Scholar 

  27. Mueller J, von Eggeling F, Driesch D, Schubert J, Melle C, Junker K (2005) ProteinChip technology reveals distinctive protein expression profiles in the urine of bladder cancer patients. Eur Urol 47:885–893

    Article  PubMed  CAS  Google Scholar 

  28. O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  CAS  Google Scholar 

  29. Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112:195–203

    Article  PubMed  CAS  Google Scholar 

  30. Patterson SD, Aebersold R (1995) Mass spectrometric approaches for the identification of gel-separated proteins. Electrophoresis 16:1791–1814

    Article  PubMed  CAS  Google Scholar 

  31. Aebersold R, Goodlett DR (2001) Mass spectrometry in proteomics. Chem Rev 101:269–295

    Article  PubMed  CAS  Google Scholar 

  32. Yanagida M (2002) Functional proteomics; current achievements. J Chromatogr B Analyt Technol Biomed Life Sci 771:89–106

    Article  PubMed  CAS  Google Scholar 

  33. Wu TL (2006) Two-dimensional difference gel electrophoresis. Methods Mol Biol 328:71–95

    PubMed  CAS  Google Scholar 

  34. Issaq HJ (2001) The role of separation science in proteomics research. Electrophoresis 22:3629–3638

    Article  PubMed  CAS  Google Scholar 

  35. Morrison RS, Kinoshita Y, Johnson MD, Uo T, Ho JT, McBee JK, Conrads TP, Veenstra TD (2002) Proteomic analysis in the neurosciences. Mol Cell Proteomics 1:553–560

    Article  PubMed  CAS  Google Scholar 

  36. Thongboonkerd V, Malasit P (2005) Renal and urinary proteomics: current applications and challenges. Proteomics 5:1033–1042

    Article  PubMed  CAS  Google Scholar 

  37. Thongboonkerd V (2004) Proteomics in nephrology: current status and future directions. Am J Nephrol 24:360–378

    Article  PubMed  CAS  Google Scholar 

  38. Getzenberg RH, Konety BR, Oeler TA, Quigley MM, Hakam A, Becich MJ, Bahnson RR (1996) Bladder cancer-associated nuclear matrix proteins. Cancer Res 56:1690–1694

    PubMed  CAS  Google Scholar 

  39. Konety BR, Nguyen TS, Brenes G, Sholder A, Lewis N, Bastacky S, Potter DM, Getzenberg RH (2000) Clinical usefulness of the novel marker BLCA-4 for the detection of bladder cancer. J Urol 164:634–639

    Article  PubMed  CAS  Google Scholar 

  40. Nielsen ME, Gonzalgo ML, Schoenberg MP, Getzenberg RH (2006) Toward critical evaluation of the role(s) of molecular biomarkers in the management of bladder cancer. World J Urol 24:499–508

    Article  PubMed  CAS  Google Scholar 

  41. Van Le TS, Miller R, Barder T, Babjuk M, Potter DM, Getzenberg RH (2005) Highly specific urine-based marker of bladder cancer. Urology 66:1256–1260

    Article  PubMed  Google Scholar 

  42. Saito M, Kimoto M, Araki T, Shimada Y, Fujii R, Oofusa K, Hide M, Usui T, Yoshizato K (2005) Proteome analysis of gelatin-bound urinary proteins from patients with bladder cancers. Eur Urol 48:865–871

    Article  PubMed  CAS  Google Scholar 

  43. Rasmussen HH, Orntoft TF, Wolf H, Celis JE (1996) Towards a comprehensive database of proteins from the urine of patients with bladder cancer. J Urol 155:2113–2119

    Article  PubMed  CAS  Google Scholar 

  44. Celis JE, Ostergaard M, Basse B, Celis A, Lauridsen JB, Ratz GP, Andersen I, Hein B, Wolf H, Orntoft TF, Rasmussen HH (1996) Loss of adipocyte-type fatty acid binding protein and other protein biomarkers is associated with progression of human bladder transitional cell carcinomas. Cancer Res 56:4782–4790

    PubMed  CAS  Google Scholar 

  45. Ohlsson G, Moreira JM, Gromov P, Sauter G, Celis JE (2005) Loss of expression of the adipocyte-type fatty acid-binding protein (A-FABP) is associated with progression of human urothelial carcinomas. Mol Cell Proteomics 4:570–581

    Article  PubMed  CAS  Google Scholar 

  46. Ostergaard M, Rasmussen HH, Nielsen HV, Vorum H, Orntoft TF, Wolf H, Celis JE (1997) Proteome profiling of bladder squamous cell carcinomas: identification of markers that define their degree of differentiation. Cancer Res 57:4111–4117

    PubMed  CAS  Google Scholar 

  47. Celis JE, Celis P, Ostergaard M, Basse B, Lauridsen JB, Ratz G, Rasmussen HH, Orntoft TF, Hein B, Wolf H, Celis A (1999) Proteomics and immunohistochemistry define some of the steps involved in the squamous differentiation of the bladder transitional epithelium: a novel strategy for identifying metaplastic lesions. Cancer Res 59:3003–3009

    PubMed  CAS  Google Scholar 

  48. Celis JE, Celis P, Palsdottir H, Ostergaard M, Gromov P, Primdahl H, Orntoft TF, Wolf H, Celis A, Gromova I (2002) Proteomic strategies to reveal tumor heterogeneity among urothelial papillomas. Mol Cell Proteomics 1:269–279

    Article  PubMed  CAS  Google Scholar 

  49. Iwaki H, Kageyama S, Isono T, Wakabayashi Y, Okada Y, Yoshimura K, Terai A, Arai Y, Iwamura H, Kawakita M, Yoshiki T (2004) Diagnostic potential in bladder cancer of a panel of tumor markers (calreticulin, gamma-synuclein, and catechol-o-methyltransferase) identified by proteomic analysis. Cancer Sci 95:955–961

    Article  PubMed  CAS  Google Scholar 

  50. Kageyama S, Isono T, Iwaki H, Wakabayashi Y, Okada Y, Kontani K, Yoshimura K, Terai A, Arai Y, Yoshiki T (2004) Identification by proteomic analysis of calreticulin as a marker for bladder cancer and evaluation of the diagnostic accuracy of its detection in urine. Clin Chem 50:857–866

    Article  PubMed  CAS  Google Scholar 

  51. Shiwa M, Nishimura Y, Wakatabe R, Fukawa A, Arikuni H, Ota H, Kato Y, Yamori T (2003) Rapid discovery and identification of a tissue-specific tumor biomarker from 39 human cancer cell lines using the SELDI ProteinChip platform. Biochem Biophys Res Commun 309:18–25

    Article  PubMed  CAS  Google Scholar 

  52. Forde CE, Gonzales AD, Smessaert JM, Murphy GA, Shields SJ, Fitch JP, McCutchen-Maloney SL (2002) A rapid method to capture and screen for transcription factors by SELDI mass spectrometry. Biochem Biophys Res Commun 290:1328–1335

    Article  PubMed  CAS  Google Scholar 

  53. Yip TT, Lomas L (2002) SELDI ProteinChip array in oncoproteomic research. Technol Cancer Res Treat 1:273–280

    PubMed  CAS  Google Scholar 

  54. Merchant M, Weinberger SR (2000) Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 21:1164–1177

    Article  PubMed  CAS  Google Scholar 

  55. von Eggeling F, Junker K, Fiedle W, Wollscheid V, Durst M, Claussen U, Ernst G (2001) Mass spectrometry meets chip technology: a new proteomic tool in cancer research? Electrophoresis 22:2898–2902

    Article  Google Scholar 

  56. Issaq HJ, Veenstra TD, Conrads TP, Felschow D (2002) The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification. Biochem Biophys Res Commun 292:587–592

    Article  PubMed  CAS  Google Scholar 

  57. Weinberger SR, Viner RI, Ho P (2002) Tagless extraction-retentate chromatography: a new global protein digestion strategy for monitoring differential protein expression. Electrophoresis 23:3182–3192

    Article  PubMed  CAS  Google Scholar 

  58. Vlahou A, Schellhammer PF, Mendrinos S, Patel K, Kondylis FI, Gong L, Nasim S, Wright JG Jr (2001) Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine. Am J Pathol 158:1491–1502

    PubMed  CAS  Google Scholar 

  59. Munro NP, Cairns DA, Clarke P, Rogers M, Stanley AJ, Barrett JH, Harnden P, Thompson D, Eardley I, Banks RE, Knowles MA (2006) Urinary biomarker profiling in transitional cell carcinoma. Int J Cancer 119:2642–2650

    Article  PubMed  CAS  Google Scholar 

  60. Holterman DA, Diaz JI, Blackmore PF, Davis JW, Schellhammer PF, Semmes OJ, Vlahou A (2006) Overexpression of alpha-defensin is associated with bladder cancer invasiveness. Urol Oncol 24(2):97–108

    PubMed  CAS  Google Scholar 

  61. Vlahou A, Giannopoulos A, Gregory BW, Manousakas T, Kondylis FI, Wilson LL, Schellhammer PF, Wright GL Jr., Semmes OJ (2004) Protein profiling in urine for the diagnosis of bladder cancer. Clin Chem 50:1438–1441

    Article  PubMed  CAS  Google Scholar 

  62. Zhang YF, Wu DL, Guan M, Liu WW, Wu Z, Chen YM, Zhang WZ, Lu Y (2004) Tree analysis of mass spectral urine profiles discriminates transitional cell carcinoma of the bladder from noncancer patient. Clin Biochem 37:772–779

    Article  PubMed  CAS  Google Scholar 

  63. Liu W, Guan M, Wu D, Zhang Y, Wu Z, Xu M, Lu Y (2005) Using tree analysis pattern and SELDI-TOF-MS to discriminate transitional cell carcinoma of the bladder cancer from noncancer patients. Eur Urol 47:456–462

    Article  PubMed  Google Scholar 

  64. Zerefos P, Prados J, Kossida S, Kalousis A, Vlahou A (2007) Sample preparation and bioinformatics in MALDI profiling of urinary proteins. J Chromatogr B Analyt Technol Biomed Life Sci 853:20–30

    Article  PubMed  CAS  Google Scholar 

  65. Tolson JP, Flad T, Gnau V, Dihazi H, Hennenlotter J, Beck A, Mueller GA, Kuczyk M, Mueller CA (2006) Differential detection of S100A8 in transitional cell carcinoma of the bladder by pair wise tissue proteomic and immunohistochemical analysis. Proteomics 6:697–708

    Article  PubMed  CAS  Google Scholar 

  66. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  PubMed  CAS  Google Scholar 

  67. Wittke S, Kaiser T, Mischak H (2004) Differential polypeptide display: the search for the elusive target. J Chromatogr B Analyt Technol Biomed Life Sci 803:17–26

    Article  PubMed  CAS  Google Scholar 

  68. Issaq HJ, Conrads TP, Janini GM, Veenstra TD (2002) Methods for fractionation, separation and profiling of proteins and peptides. Electrophoresis 23:3048–3061

    Article  PubMed  CAS  Google Scholar 

  69. Ru QC, Katenhusen RA, Zhu LA, Silberman J, Yang S, Orchard TJ, Brzeski H, Liebman M, Ellsworth DL (2006) Proteomic profiling of human urine using multi-dimensional protein identification technology. J Chromatogr A 1111:166–174

    Article  PubMed  CAS  Google Scholar 

  70. Kislinger T, Gramolini AO, Maclennan DH, Emili A (2005) Multidimensional protein identification technology (MudPIT): technical overview of a profiling method optimized for the comprehensive proteomic investigation of normal and diseased heart tissue. J Am Soc Mass Spectrom 16:1207–1220

    Article  PubMed  CAS  Google Scholar 

  71. Soldi M, Sarto C, Valsecchi C, Magni F, Proserpio V, Ticozzi D, Mocarelli P (2005) Proteome profile of human urine with two-dimensional liquid phase fractionation. Proteomics 5:2641–2647

    Article  PubMed  CAS  Google Scholar 

  72. Chen EI, Hewel J, Felding-Habermann B, Yates JR III (2006) Large scale protein profiling by combination of protein fractionation and multidimensional protein identification technology (MudPIT). Mol Cell Proteomics 5:53–56

    PubMed  CAS  Google Scholar 

  73. Cagney G, Park S, Chung C, Tong B, O’Dushlaine C, Shields DC, Emili A (2005) Human tissue profiling with multidimensional protein identification technology. J Proteome Res 4:1757–1767

    Article  PubMed  CAS  Google Scholar 

  74. Kreunin P, Zhao J, Rosser C, Urquidi V, Lubman DM, Goodison S (2007) Bladder cancer associated glycoprotein signatures revealed by urinary proteomic profiling. J Proteome Res 6:2631–2639

    Article  PubMed  CAS  Google Scholar 

  75. Dolnik V, Hutterer KM (2001) Capillary electrophoresis of proteins 1999–2001. Electrophoresis 22:4163–4178

    Article  PubMed  CAS  Google Scholar 

  76. Dolnik V (2005) Capillary electrophoresis of proteins2003–2005. Electrophoresis 27:126–141

    Article  CAS  Google Scholar 

  77. Schmitt-Kopplin P, Frommberger M (2003) Capillary electrophoresis-mass spectrometry: 15 years of developments and applications. Electrophoresis 24:3837–3867

    Article  PubMed  CAS  Google Scholar 

  78. Kasicka V (2005) Recent developments in capillary electrophoresis and capillary electrochromatography of peptides. Electrophoresis 27:142–175

    Google Scholar 

  79. Simpson DC, Smith RD (2005) Combining capillary electrophoresis with mass spectrometry for applications in proteomics. Electrophoresis 26:1291–1305

    Article  PubMed  CAS  Google Scholar 

  80. Johannesson N, Wetterhall M, Markides KE, Bergquist J (2004) Monomer surface modifications for rapid peptide analysis by capillary electrophoresis and capillary electrochromatography coupled to electrospray ionization-mass spectrometry. Electrophoresis 25:809–816

    Article  PubMed  CAS  Google Scholar 

  81. Hernandez-Borges J, Neususs C, Cifuentes A, Pelzing M (2004) On-line capillary electrophoresis-mass spectrometry for the analysis of biomolecules. Electrophoresis 25:2257–2281

    Article  PubMed  CAS  Google Scholar 

  82. Neususs C, Pelzing M, Macht M (2002) A robust approach for the analysis of peptides in the low femtomole range by capillary electrophoresis-tandem mass spectrometry. Electrophoresis 23:3149–3159

    Article  PubMed  CAS  Google Scholar 

  83. Kaiser T, Kamal H, Rank A, Kolb HJ, Holler E, Ganser A, Hertenstein B, Mischak H, Weissinger EM (2004) Proteomics applied to the clinical follow-up of patients after allogeneic hematopoietic stem cell transplantation. Blood 104:340–349

    Article  PubMed  CAS  Google Scholar 

  84. Decramer S, Wittke S, Mischak H, Zurbig P, Walden M, Bouissou F, Bascands JL, Schanstra JP (2006) Predicting the clinical outcome of congenital unilateral ureteropelvic junction obstruction in newborn by urinary proteome analysis. Nat Med 12:398–400

    Article  PubMed  CAS  Google Scholar 

  85. Weissinger EM, Schiffer E, Hertenstein B, Ferrara JL, Holler E, Stadler M, Kolb HJ, Zander A, Zurbig P, Kellmann M, Ganser A (2007) Proteomic patterns predict acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Blood 109:5511–5519

    Article  PubMed  CAS  Google Scholar 

  86. Theodorescu D, Wittke S, Ross MM, Walden M, Conaway M, Just I, Mischak H, Frierson HF (2006) Discovery and validation of new protein biomarkers for urothelial cancer: a prospective analysis. Lancet Oncol 7:230–240

    Article  PubMed  CAS  Google Scholar 

  87. Kozarova A, Petrinac S, Ali A, Hudson JW (2006) Array of informatics: applications in modern research. J Proteome Res 5:1051–1059

    Article  PubMed  CAS  Google Scholar 

  88. Sanchez-Carbayo M, Cordon-Cardo C (2007) Molecular alterations associated with bladder cancer progression. Semin Oncol 34:75–84

    Article  PubMed  CAS  Google Scholar 

  89. Sanchez-Carbayo M (2006) Antibody arrays: technical considerations and clinical applications in cancer. Clin Chem 52:1651–1659

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially funded by Eurotransbio grant ETB-2006-016 to the Urosysteomics consortium (http://www.urosysteomics.com) to E.S. and H.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia Vlahou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiffer, E., Mischak, H., Theodorescu, D. et al. Challenges of using mass spectrometry as a bladder cancer biomarker discovery platform. World J Urol 26, 67–74 (2008). https://doi.org/10.1007/s00345-007-0234-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-007-0234-z

Keywords

Navigation