Skip to main content

Advertisement

Log in

Key clinical issues in renal cancer: a challenge for proteomics

  • Topic Paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Renal cancer has many clinical challenges which proteomics is ideally placed to address. The issues cover all aspects of the disease including diagnosis, prognosis, treatment selection and monitoring to detect metastatic disease. In all cases novel biomarkers would considerably help in clinical management and with the relative resistance to conventional chemotherapy and radiotherapy, a better understanding of the underlying pathogenesis may contribute to the much needed development of novel therapeutic targets and the better use of promising new anti-angiogenic treatments. This review briefly highlights some of the clinical issues and describes proteomics-based approaches generally, before focussing on reviewing the proteomic studies to date in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Drucker BJ (2005) Renal cell carcinoma: current status and future prospects. Cancer Treat Rev 31:536–545

    PubMed  Google Scholar 

  2. Pantuck AJ, Zisman A, Belldegrun AS (2001) The changing natural history of renal cell carcinoma. J Urol 166:1611–1623

    PubMed  CAS  Google Scholar 

  3. Banks RE, Tirukonda P, Taylor C, Hornigold N, Astuti D, Maher ER, et al (2006) Genetic and epigenetic analysis of von Hippel-Lindau (VHL) gene alterations and relationship with clinical variables in sporadic renal cancer. Cancer Res 66:2000–2011

    PubMed  CAS  Google Scholar 

  4. Bleumer I, Tiemessen DM, Oosterwijk-Wakka JC, Voller MC, De WK, Mulders PF, et al (2007) Preliminary analysis of patients with progressive renal cell carcinoma vaccinated with CA9-peptide-pulsed mature dendritic cells. J Immunother 30:116–122

    PubMed  CAS  Google Scholar 

  5. Silver DA, Morash C, Brenner P, Campbell S, Russo P (1997) Pathologic findings at the time of nephrectomy for renal mass. Ann Surg Oncol 4:570–574

    PubMed  CAS  Google Scholar 

  6. Licht MR (1995) Renal adenoma and oncocytoma. Semin Urol Oncol 13:262–266

    PubMed  CAS  Google Scholar 

  7. Montie JE, Stewart BH, Straffon RA, Banowsky LH, Hewitt CB, Montague DK (1977) The role of adjunctive nephrectomy in patients with metastatic renal cell carcinoma. J Urol 117:272–275

    PubMed  CAS  Google Scholar 

  8. Flanigan RC, Salmon SE, Blumenstein BA, Bearman SI, Roy V, McGrath PC, et al (2001) Nephrectomy followed by interferon alfa-2b compared with interferon alfa-2b alone for metastatic renal-cell cancer. N Engl J Med 345:1655–1659

    PubMed  CAS  Google Scholar 

  9. Shingleton WB, Sewell PE Jr (2001) Percutaneous renal tumor cryoablation with magnetic resonance imaging guidance. J Urol 165:773–776

    PubMed  CAS  Google Scholar 

  10. McDougal WS, Gervais DA, McGovern FJ, Mueller PR (2005) Long-term followup of patients with renal cell carcinoma treated with radio frequency ablation with curative intent. J Urol 174:61–63

    PubMed  Google Scholar 

  11. Gervais DA, McGovern FJ, Arellano RS, McDougal WS, Mueller PR (2005) Radiofrequency ablation of renal cell carcinoma: part 1, Indications, results, and role in patient management over a 6-year period and ablation of 100 tumors. AJR Am J Roentgenol 185:64–71

    PubMed  Google Scholar 

  12. Gervais DA, Arellano RS, McGovern FJ, McDougal WS, Mueller PR (2005) Radiofrequency ablation of renal cell carcinoma: part 2, Lessons learned with ablation of 100 tumors. AJR Am J Roentgenol 185:72–80

    PubMed  Google Scholar 

  13. Wu F, Wang ZB, Chen WZ, Bai J, Zhu H, Qiao TY (2003) Preliminary experience using high intensity focused ultrasound for the treatment of patients with advanced stage renal malignancy. J Urol 170:2237–2240

    PubMed  Google Scholar 

  14. Illing RO, Kennedy JE, Wu F, ter Haar GR, Protheroe AS, Friend PJ, et al (2005) The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population. Br J Cancer 93:890–895

    PubMed  CAS  Google Scholar 

  15. Swanson DA, Wallace S, Johnson DE (1980) The role of embolization and nephrectomy in the treatment of metastatic renal carcinoma. Urol Clin North Am 7:719–730

    PubMed  CAS  Google Scholar 

  16. Gallucci M, Guaglinone S, Carpanese L, Papalia R, Simone G, Forestiere E, et al (2007) Superselective embolization as first step of laparoscopic partial nephrectomy. Urology 69:642–645

    PubMed  Google Scholar 

  17. MRC Renal Cancer Working Party 1998 (1999) Interferon-alpha and survival in metastatic renal carcinoma: early results of a randomised controlled trial. Medical research council renal cancer collaborators. Lancet 353:14–17

    Google Scholar 

  18. Atzpodien J, Kirchner H, Rebmann U, Soder M, Gertenbach U, Siebels M, et al (2006) Interleukin-2/interferon-alpha2a/13-retinoic acid-based chemoimmunotherapy in advanced renal cell carcinoma: results of a prospectively randomised trial of the German Cooperative Renal Carcinoma Chemoimmunotherapy Group (DGCIN). Br J Cancer 95:463–469

    PubMed  CAS  Google Scholar 

  19. Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL, et al (2003) A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 349:427–434

    PubMed  CAS  Google Scholar 

  20. Bankhead C (2006) Three new drugs available to fight kidney cancer. J Natl Cancer Inst 98:1181–1182

    PubMed  Google Scholar 

  21. Ratain MJ, Eisen T, Stadler WM, Flaherty KT, Kaye SB, Rosner GL, et al (2006) Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol 24:2505–2512

    PubMed  CAS  Google Scholar 

  22. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:115–124

    PubMed  CAS  Google Scholar 

  23. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, et al (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356:125–134

    PubMed  CAS  Google Scholar 

  24. Zisman A, Pantuck AJ, Dorey F, Said JW, Shvarts O, Quintana D, et al (2001) Improved prognostication of renal cell carcinoma using an integrated staging system. J Clin Oncol 19:1649–1657

    PubMed  CAS  Google Scholar 

  25. Oosterwijk E, Ruiter DJ, Hoedemaeker PJ, Pauwels EK, Jonas U, Zwartendijk J, et al (1986) Monoclonal antibody G 250 recognizes a determinant present in renal-cell carcinoma and absent from normal kidney. Int J Cancer 38:489–494

    PubMed  CAS  Google Scholar 

  26. Bell ET (1950) Renal diseases. Lea & Febiger, Philadelphia

  27. Eschwege P, Saussine C, Steichen G, Delepaul B, Drelon L, Jacqmin D (1996) Radical nephrectomy for renal cell carcinoma 30 mm. or less: long-term follow results. J Urol 155:1196–1199

    PubMed  CAS  Google Scholar 

  28. Mastofi FK, Davis CJ, Sobin LH (1998) Histological typing of kidney tumours, 2nd edn. Springer, Berlin, Heidelberg

    Google Scholar 

  29. Kovacs G, Fuzesi L, Emanual A, Kung HF (1991) Cytogenetics of papillary renal cell tumors. Genes Chromosomes Cancer 3:249–255

    PubMed  CAS  Google Scholar 

  30. Kovacs G, Akhtar M, Beckwith BJ, Bugert P, Cooper CS, Delahunt B, et al (1997) The Heidelberg classification of renal cell tumours. J Pathol 183:131–133

    PubMed  CAS  Google Scholar 

  31. Abrahams NA, MacLennan GT, Khoury JD, Ormsby AH, Tamboli P, Doglioni C, et al (2004) Chromophobe renal cell carcinoma: a comparative study of histological, immunohistochemical and ultrastructural features using high throughput tissue microarray. Histopathology 45:593–602

    PubMed  CAS  Google Scholar 

  32. Kuroda N, Toi M, Yamamoto M, Miyazaki E, Hayashi Y, Hiroi M, et al (2004) Immunohistochemical identification of intracytoplasmic lumens by cytokeratin typing may differentiate renal oncocytomas from chromophobe renal cell carcinomas. Histol Histopathol 19:23–28

    PubMed  CAS  Google Scholar 

  33. Wang HY, Mills SE (2005) KIT and RCC are useful in distinguishing chromophobe renal cell carcinoma from the granular variant of clear cell renal cell carcinoma. Am J Surg Pathol 29:640–646

    PubMed  Google Scholar 

  34. Mazal PR, Stichenwirth M, Koller A, Blach S, Haitel A, Susani M (2005) Expression of aquaporins and PAX-2 compared to CD10 and cytokeratin 7 in renal neoplasms: a tissue microarray study. Mod Pathol 18:535–540

    PubMed  CAS  Google Scholar 

  35. Rampino T, Gregorini M, Soccio G, Maggio M, Rosso R, Malvezzi P, et al (2003) The Ron proto-oncogene product is a phenotypic marker of renal oncocytoma. Am J Surg Pathol 27:779–785

    PubMed  Google Scholar 

  36. Patton KT, Tretiakova MS, Yao JL, Papavero V, Huo L, Adley BP, et al (2004) Expression of RON Proto-oncogene in Renal Oncocytoma and Chromophobe Renal Cell Carcinoma. Am J Surg Pathol 28:1045–1050

    PubMed  Google Scholar 

  37. Mazal PR, Exner M, Haitel A, Krieger S, Thomson RB, Aronson PS, et al (2005) Expression of kidney-specific cadherin distinguishes chromophobe renal cell carcinoma from renal oncocytoma. Hum Pathol 36:22–28

    PubMed  CAS  Google Scholar 

  38. Adley BP, Gupta A, Lin F, Luan C, Teh BT, Yang XJ (2006) Expression of kidney-specific cadherin in chromophobe renal cell carcinoma and renal oncocytoma. Am J Clin Pathol 126:79–85

    PubMed  CAS  Google Scholar 

  39. Shen SS, Krishna B, Chirala R, Amato RJ, Truong LD (2005) Kidney-specific cadherin, a specific marker for the distal portion of the nephron and related renal neoplasms. Mod Pathol 18:933–940

    PubMed  CAS  Google Scholar 

  40. Zisman A, Pantuck AJ, Wieder J, Chao DH, Dorey F, Said JW, et al (2002) Risk group assessment and clinical outcome algorithm to predict the natural history of patients with surgically resected renal cell carcinoma. J Clin Oncol 20:4559–4566

    PubMed  Google Scholar 

  41. Sorbellini M, Kattan MW, Snyder ME, Reuter V, Motzer R, Goetzl M, et al (2005) A postoperative prognostic nomogram predicting recurrence for patients with conventional clear cell renal cell carcinoma. J Urol 173:48–51

    Article  PubMed  Google Scholar 

  42. Leibovich BC, Blute ML, Cheville JC, Lohse CM, Frank I, Kwon ED, et al (2003) Prediction of progression after radical nephrectomy for patients with clear cell renal cell carcinoma: a stratification tool for prospective clinical trials. Cancer 97:1663–1671

    PubMed  Google Scholar 

  43. Lohse CM, Cheville JC (2005) A review of prognostic pathologic features and algorithms for patients treated surgically for renal cell carcinoma. Clin Lab Med 25:433–464

    PubMed  Google Scholar 

  44. UICC (2002) TNM classification of malignant tumors, 6th edn. Wiley, New York

  45. Soilleux EJ, Roberts IS (2006) Assessment of the Cardiff nephrectomy cut-up protocol with total blocking of the renal sinus: effect on tumour staging and practical issues. J Clin Pathol 59:1209–1211

    PubMed  CAS  Google Scholar 

  46. Fuhrman SA, Lasky LC, Limas C (1982) Prognostic significance of morphologic parameters in renal cell carcinoma. Am J Surg Pathol 6:655–663

    Article  PubMed  CAS  Google Scholar 

  47. Lau WK, Cheville JC, Blute ML, Weaver AL, Zincke H (2002) Prognostic features of pathologic stage T1 renal cell carcinoma after radical nephrectomy. Urology 59:532–537

    PubMed  Google Scholar 

  48. Amin MB, Amin MB, Tamboli P, Javidan J, Stricker H, de Peralta VM, et al (2002) Prognostic impact of histologic subtyping of adult renal epithelial neoplasms: an experience of 405 cases. Am J Surg Pathol 26:281–291

    PubMed  Google Scholar 

  49. Ficarra V, Righetti R, Pilloni S, D’Amico A, Maffei N, Novella G, et al (2002) Prognostic factors in patients with renal cell carcinoma: retrospective analysis of 675 cases. Eur Urol 41:190–198

    PubMed  Google Scholar 

  50. Gudbjartsson T, Hardarson S, Petursdottir V, Thoroddsen A, Magnusson J, Einarsson GV (2005) Histological subtyping and nuclear grading of renal cell carcinoma and their implications for survival: a retrospective nation-wide study of 629 patients. Eur Urol 48:593–600

    PubMed  Google Scholar 

  51. Patard JJ, Leray E, Rioux-Leclercq N, Cindolo L, Ficarra V, Zisman A, et al (2005) Prognostic value of histologic subtypes in renal cell carcinoma: a multicenter experience. J Clin Oncol 23:2763–2771

    PubMed  Google Scholar 

  52. Al-Aynati M, Chen V, Salama S, Shuhaibar H, Treleaven D, Vincic L (2003) Interobserver and intraobserver variability using the Fuhrman grading system for renal cell carcinoma. Arch Pathol Lab Med 127:593–596

    PubMed  Google Scholar 

  53. Craven RA, Banks RE (2001) Laser capture microdissection and proteomics: possibilities and limitation. Proteomics 1:1200–1204

    PubMed  CAS  Google Scholar 

  54. Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867

    PubMed  CAS  Google Scholar 

  55. Zhou M, Lucas DA, Chan KC, Issaq HJ, Petricoin EF III, Liotta LA, et al (2004) An investigation into the human serum “interactome”. Electrophoresis 25:1289–1298

    PubMed  CAS  Google Scholar 

  56. Celis JE, Gromov P, Cabezon T, Moreira JM, Ambartsumian N, Sandelin K, et al (2004) Proteomic characterization of the interstitial fluid perfusing the breast tumor microenvironment: a novel resource for biomarker and therapeutic target discovery. Mol Cell Proteomics 3:327–344

    PubMed  CAS  Google Scholar 

  57. Banks RE, Stanley AJ, Cairns DA, Barrett JH, Clarke P, Thompson D, et al (2005) Influences of blood sample processing on low-molecular-weight proteome identified by surface-enhanced laser desorption/ionization mass spectrometry. Clin Chem 51:1637–1649

    PubMed  CAS  Google Scholar 

  58. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    PubMed  CAS  Google Scholar 

  59. Palagi PM, Hernandez P, Walther D, Appel RD (2006) Proteome informatics I: bioinformatics tools for processing experimental data. Proteomics 6:5435–5444

    PubMed  CAS  Google Scholar 

  60. Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, et al (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3:36–44

    PubMed  CAS  Google Scholar 

  61. Gorg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4:3665–3685

    PubMed  Google Scholar 

  62. Soldi M, Sarto C, Valsecchi C, Magni F, Proserpio V, Ticozzi D, et al (2005) Proteome profile of human urine with two-dimensional liquid phase fractionation. Proteomics 5:2641–2647

    PubMed  CAS  Google Scholar 

  63. Sheng S, Chen D, Van Eyk JE (2006) Multidimensional liquid chromatography separation of intact proteins by chromatographic focusing and reversed phase of the human serum proteome: optimization and protein database. Mol Cell Proteomics 5:26–34

    PubMed  CAS  Google Scholar 

  64. Jin Y, Manabe T (2005) Direct targeting of human plasma for matrix-assisted laser desorption/ionization and analysis of plasma proteins by time of flight-mass spectrometry. Electrophoresis 26:2823–2834

    PubMed  CAS  Google Scholar 

  65. Yanagisawa K, Shyr Y, Xu BJ, Massion PP, Larsen PH, White BC, et al (2003) Proteomic patterns of tumour subsets in non-small-cell lung cancer. The Lancet 362:433–439

    CAS  Google Scholar 

  66. Tang N, Tornatore P, Weinberger SR (2004) Current developments in SELDI affinity technology. Mass Spectrom Rev 23:34–44

    PubMed  CAS  Google Scholar 

  67. Semmes OJ, Feng Z, Adam BL, Banez LL, Bigbee WL, Campos D, et al (2005) Evaluation of serum protein profiling by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry for the detection of prostate cancer: I. Assessment of platform reproducibility. Clin Chem 51:102–112

    PubMed  CAS  Google Scholar 

  68. Rai AJ, Stemmer PM, Zhang Z, Adam BL, Morgan WT, Caffrey RE, et al (2005) Analysis of human proteome organization plasma proteome project (HUPO PPP) reference specimens using surface enhanced laser desorption/ionization-time of flight (SELDI-TOF) mass spectrometry: multi-institution correlation of spectra and identification of biomarkers. Proteomics 5:3467–3474

    PubMed  CAS  Google Scholar 

  69. Chaurand P, Norris JL, Cornett DS, Mobley JA, Caprioli RM (2006) New developments in profiling and imaging of proteins from tissue sections by MALDI mass spectrometry. J Proteome Res 5:2889–2900

    PubMed  CAS  Google Scholar 

  70. Wolters DA, Washburn MP, Yates JR III (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73:5683–5690

    PubMed  CAS  Google Scholar 

  71. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, et al (2002) Stable isotope labelling by amino acids in cell culture, SILAC, as a simplae and accurate apporach to expression proteomics. Mol Cell Proteomics 1:376–386

    PubMed  CAS  Google Scholar 

  72. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, et al (2004) Multiplexed protein quantitation in saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    PubMed  CAS  Google Scholar 

  73. Sarto C, Marocchi A, Sanchez JC, Giannone D, Frutiger S, Golaz O, et al (1997) Renal cell carcinoma and normal kidney protein expression. Electrophoresis 18:599–604

    PubMed  CAS  Google Scholar 

  74. Sarto C, Frutiger S, Cappellano F, Sanchez JC, Doro G, Catanzaro F, et al (1999) Modified expression of plasma glutathione peroxidase and manganese superoxide dismutase in human renal cell carcinoma. Electrophoresis 20:3458–3466

    PubMed  CAS  Google Scholar 

  75. Balabanov S, Zimmermann U, Protzel C, Scharf C, Klebingat KJ, Walther R (2001) Tumour-related enzyme alterations in the clear cell type of human renal cell carcinoma identified by two-dimensional gel electrophoresis. Eur J Biochem 268:5977–5980

    PubMed  CAS  Google Scholar 

  76. Dallmann K, Junker H, Balabanov S, Zimmermann U, Giebel J, Walther R (2004) Human agmatinase is diminished in the clear cell type of renal cell carcinoma. Int J Cancer 108:342–347

    PubMed  CAS  Google Scholar 

  77. Zimmermann U, Balabanov S, Giebel J, Teller S, Junker H, Schmoll D, et al (2004) Increased expression and altered location of annexin IV in renal clear cell carcinoma: a possible role in tumour dissemination. Cancer Lett 209:111–118

    PubMed  CAS  Google Scholar 

  78. Unwin RD, Craven RA, Harnden P, Hanrahan S, Totty N, Knowles M, et al (2003) Proteomic changes in renal cancer and co-ordinate demonstration of both the glycolytic and mitochondrial aspects of the Warburg effect. Proteomics 3:1620–1632

    PubMed  CAS  Google Scholar 

  79. Hwa JS, Park HJ, Jung JH, Kam SC, Park HC, Kim CW, et al (2005) Identification of proteins differentially expressed in the conventional renal cell carcinoma by proteomic analysis. J Korean Med Sci 20:450–455

    Article  PubMed  CAS  Google Scholar 

  80. Seliger B, Lichtenfels R, Atkins D, Bukur J, Halder T, Kersten M, et al (2005) Identification of fatty acid binding proteins as markers associated with the initiation and/or progression of renal cell carcinoma. Proteomics 5:2631–2640

    PubMed  CAS  Google Scholar 

  81. Perroud B, Lee J, Valkova N, Dhirapong A, Lin PY, Fiehn O, et al (2006) Pathway analysis of kidney cancer using proteomics and metabolic profiling. Mol Cancer 5:64

    PubMed  Google Scholar 

  82. Alchanati I, Nallar SC, Sun P, Gao L, Hu J, Stein A, et al (2006) A proteomic analysis reveals the loss of expression of the cell death regulatory gene GRIM-19 in human renal cell carcinomas. Oncogene 25:7138–7147

    PubMed  CAS  Google Scholar 

  83. Seliger B, Fedorushchenko A, Brenner W, Ackermann A, Atkins D, Hanash S, et al (2007) Ubiquitin COOH-terminal hydrolase 1: a biomarker of renal cell carcinoma associated with enhanced tumor cell proliferation and migration. Clin Cancer Res 13:27–37

    PubMed  CAS  Google Scholar 

  84. Poznanovic S, Wozny W, Schwall GP, Sastri C, Hunzinger C, Stegmann W, et al (2005) Differential radioactive proteomic analysis of microdissected renal cell carcinoma tissue by 54 cm isoelectric focusing in serial immobilized pH gradient gels. J Proteome Res 4:2117–2125

    PubMed  CAS  Google Scholar 

  85. Zhuang Z, Huang S, Kowalak JA, Shi Y, Lei J, Furuta M, et al (2006) From tissue phenotype to proteotype: sensitive protein identification in microdissected tumor tissue. Int J Oncol 28:103–110

    PubMed  CAS  Google Scholar 

  86. Bloom GC, Eschrich S, Zhou JX, Coppola D, Yeatman TJ (2007) Elucidation of a protein signature discriminating six common types of adenocarcinoma. Int J Cancer 120:769–775

    PubMed  CAS  Google Scholar 

  87. Castronovo V, Waltregny D, Kischel P, Roesli C, Elia G, Rybak JN, et al (2006) A chemical proteomics approach for the identification of accessible antigens expressed in human kidney cancer. Mol Cell Proteomics 5:2083–2091

    PubMed  CAS  Google Scholar 

  88. von Eggeling F, Junker K, Fiedle W, Wollscheid V, Durst M, Claussen U, et al (2001) Mass spectrometry meets chip technology: a new proteomic tool in cancer research? Electrophoresis 22:2898–2902

    Google Scholar 

  89. Junker K, Gneist J, Melle C, Driesch D, Schubert J, Claussen U, et al (2005) Identification of protein pattern in kidney cancer using ProteinChip arrays and bioinformatics. Int J Mol Med 15:285–290

    PubMed  CAS  Google Scholar 

  90. Fetsch PA, Simone NL, Bryant-Greenwood PK, Marincola FM, Filie AC, Petricoin EF, et al (2002) Proteomic evaluation of archival cytologic material using SELDI affinity mass spectrometry: potential for diagnostic applications. Am J Clin Pathol 118:870–876

    PubMed  CAS  Google Scholar 

  91. Craven RA, Stanley AJ, Hanrahan S, Dods J, Unwin R, Totty N, et al (2006) Proteomic analysis of primary cell lines identifies protein changes present in renal cell carcinoma. Proteomics 6:2853–2864

    PubMed  CAS  Google Scholar 

  92. Perego RA, Bianchi C, Corizzato M, Eroini B, Torsello B, Valsecchi C, et al (2005) Primary cell cultures arising from normal kidney and renal cell carcinoma retain the proteomic profile of corresponding tissues. J Proteome Res 4:1503–1510

    PubMed  CAS  Google Scholar 

  93. Shi T, Dong F, Liou LS, Duan ZH, Novick AC, DiDonato JA (2004) Differential protein profiling in renal-cell carcinoma. Mol Carcinog 40:47–61

    PubMed  CAS  Google Scholar 

  94. Craven RA, Hanrahan S, Totty N, Harnden P, Stanley AJ, Maher ER, et al (2006) Proteomic identification of a role for the von Hippel Lindau tumour suppressor in changes in the expression of mitochondrial proteins and septin 2 in renal cell carcinoma. Proteomics 6:3880–3893

    PubMed  CAS  Google Scholar 

  95. Nakamura E, Abreu-e-Lima, Awakura Y, Inoue T, Kamoto T, Ogawa O, et al (2006) Clusterin is a secreted marker for a hypoxia-inducible factor-independent function of the von Hippel-Lindau tumor suppressor protein. Am J Pathol 168:574–584

    PubMed  CAS  Google Scholar 

  96. Nakamura K, Yoshikawa K, Yamada Y, Saga S, Aoki S, Taki T, et al (2006) Differential profiling analysis of proteins involved in anti-proliferative effect of interferon-alpha on renal cell carcinoma cell lines by protein biochip technology. Int J Oncol 28:965–970

    PubMed  CAS  Google Scholar 

  97. Adam PJ, Terrett JA, Steers G, Stockwin L, Loader JA, Fletcher GC, et al (2006) CD70 (TNFSF7) is expressed at high prevalence in renal cell carcinomas and is rapidly internalised on antibody binding. Br J Cancer 95:298–306

    PubMed  CAS  Google Scholar 

  98. Pieper R, Gatlin CL, McGrath AM, Makusky AJ, Mondal M, Seonarain M, et al (2004) Characterization of the human urinary proteome: a method for high-resolution display of urinary proteins on two-dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots. Proteomics 4:1159–1174

    PubMed  CAS  Google Scholar 

  99. Rogers MA, Clarke P, Noble J, Munro NP, Paul A, Selby PJ, et al (2003) Proteomic profiling of urinary proteins in renal cancer by surface enhanced laser desorption ionisation (SELDI) and neural network analysis: identification of key issues affecting potential clinical utility. Cancer Res 63:6971–6983

    PubMed  CAS  Google Scholar 

  100. Won Y, Song HJ, Kang TW, Kim JJ, Han BD, Lee SW (2003) Pattern analysis of serum proteome distinguishes renal cell carcinoma from other urologic diseases and healthy persons. Proteomics 3:2310–2316

    PubMed  CAS  Google Scholar 

  101. Tolson J, Bogumil R, Brunst E, Beck H, Elsner R, Humeny A, et al (2004) Serum protein profiling by SELDI mass spectrometry: detection of multiple variants of serum amyloid alpha in renal cancer patients. Lab Invest 84:845–856

    PubMed  CAS  Google Scholar 

  102. Rossi L, Martin BM, Hortin GL, White RL, Foster M, Moharram R, et al (2006) Inflammatory protein profile during systemic high dose interleukin-2 administration. Proteomics 6:709–720

    PubMed  CAS  Google Scholar 

  103. Panelli MC, White R, Foster M, Martin B, Wang E, Smith K, et al (2004) Forecasting the cytokine storm following systemic interleukin (IL)-2 administration. J Transl Med 2:17

    PubMed  Google Scholar 

  104. Klade CS, Voss T, Krystek E, Ahorn H, Zatloukal K, Pummer K, Adolf GR (2001) Identification of tumor antigens in renal cell carcinoma by serological proteome analysis. Proteomics 1:890–898

    PubMed  CAS  Google Scholar 

  105. Lichtenfels R, Kellner R, Bukur J, Beck J, Brenner W, Ackermann A, et al (2002) Heat shock protein expression and anti-heat shock protein reactivity in renal cell carcinoma. Proteomics 2:561–570

    PubMed  CAS  Google Scholar 

  106. Kellner R, Lichtenfels R, Atkins D, Bukur J, Ackermann A, Beck J, et al (2002) Targeting of tumor associated antigens in renal cell carcinoma using proteome-based analysis and their clinical significance. Proteomics 2:1743–1751

    PubMed  CAS  Google Scholar 

  107. Lichtenfels R, Kellner R, Atkins D, Bukur J, Ackermann A, Beck J, et al (2003) Identification of metabolic enzymes in renal cell carcinoma utilizing PROTEOMEX analyses. Biochim Biophys Acta 1646:21–31

    PubMed  CAS  Google Scholar 

  108. Unwin RD, Harnden P, Pappin D, Rahman D, Whelan P, Craven RA, et al (2003) Serological and proteomic evaluation of antibody responses in the identification of tumor antigens in renal cell carcinoma. Proteomics 3:45–55

    PubMed  CAS  Google Scholar 

  109. Kruger T, Schoor O, Lemmel C, Kraemer B, Reichle C, Dengjel J (2005) Lessons to be learned from primary renal cell carcinomas: novel tumor antigens and HLA ligands for immunotherapy. Cancer Immunol Immunother 54:826–836

    PubMed  Google Scholar 

  110. Weinzierl AO, Lemmel C, Schoor O, Muller M, Kruger T, Wernet D, et al (2007) Distorted relation between mRNA copy number and corresponding major histocompatibility complex ligand density on the cell surface. Mol Cell Proteomics 6:102–113

    PubMed  CAS  Google Scholar 

  111. Flad T, Mueller L, Dihazi H, Grigorova V, Bogumil R, Beck A (2006) T cell epitope definition by differential mass spectrometry: identification of a novel, immunogenic HLA-B8 ligand directly from renal cancer tissue. Proteomics 6:364–374

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosamonde E. Banks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banks, R.E., Craven, R.A., Harnden, P. et al. Key clinical issues in renal cancer: a challenge for proteomics. World J Urol 25, 537–556 (2007). https://doi.org/10.1007/s00345-007-0199-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-007-0199-y

Keywords

Navigation