Skip to main content

Advertisement

Log in

Urinary biomarkers of IgA nephropathy and other IgA-associated renal diseases

  • Topic Paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

IgA nephropathy is the most common primary glomerulonephritis and is a frequent cause for chronic kidney disease in children and young adults. Glomerular deposition of IgA also characterizes other renal disorders, including Henoch-Schoenlein purpura nephritis and immune-complex glomerulonephritis afflicting patients with liver disease due to chronic infection with the hepatitis C virus. Several treatment options are often considered, with the goal to prevent end-stage renal failure. Unfortunately, the diagnosis currently requires an invasive procedure, a renal biopsy. Because of the inherent risks, repetitive renal biopsy is frequently foregone as a means to monitor the clinical course or response to treatment. Recent advances in the analysis of the urinary proteome suggest that the excreted polypeptides include disease-specific patterns. We review recent studies of the various techniques for the identification and validation of such urinary biomarkers of IgA-associated glomerulonephritides. Currently, capillary electrophoresis coupled with mass spectrometry (MS) offers the greatest promise. To date, it seems more likely that disease-specific urinary polypeptide biomarkers are comprised of a panel of several distinct and well-defined peptides rather than a single molecule. Even most patients in clinical remission with normal clinical testing (dipstick urinalysis and quantitative proteinuria) were correctly classified by the pattern of polypeptides identified by capillary electrophoresis coupled with MS. With confirmation and refinement, such urinary testing may provide a tool for the diagnosis and monitoring of patients with IgA-associated renal diseases that is more sensitive than current standard clinical testing and far less risky than renal biopsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Levy M, Berger J (1988) Worldwide perspective of IgA nephropathy. Am J Kidney Dis 12:340–347

    PubMed  CAS  Google Scholar 

  2. Jennette JC (1988) The immunohistology of IgA nephropathy. Am J Kidney Dis 12:348–352

    PubMed  CAS  Google Scholar 

  3. Berger J, Hinglais N (1968) Les depots intercapillaires d’IgA–IgG (intercapillary deposits of IgA–IgG). J Urol Nephrol 74:694–695

    CAS  Google Scholar 

  4. Yoshikawa N, Iijima K, Matsuyama S, Suzuki J, Kameda A, Okada S, Nakamura H (1990) Repeat renal biopsy in children with IgA nephropathy. Clin Nephrol 33:160–167

    PubMed  CAS  Google Scholar 

  5. Davin JC, Ten Berge IJ, Weening JJ (2001) What is the difference between IgA nephropathy and Henoch-Schönlein purpura nephritis? Kidney Int 59:823–834

    Article  PubMed  CAS  Google Scholar 

  6. Fervenza FC (2003) Henoch-Schönlein purpura nephritis. Int J Dermatol 42:170–177

    Article  PubMed  Google Scholar 

  7. Delos Santos NM, Wyatt RJ (2004) Pediatric IgA nephropathies: clinical aspects and therapeutic approaches. Semin Nephrol 24:269–286

    Article  PubMed  Google Scholar 

  8. Emancipator SN (1998) IgA nephropathy and Henoch-Schönlein syndrome. In: Jennette JC, Olson JL, Schwartz MM, Silva FG (eds) Heptinstall’s pathology of the kidney. Lippincott-Raven Publishers, Philadelphia, pp 479–539

    Google Scholar 

  9. Coppo R, Amore A, Cirina P, Messina M, Basolo B, Segoloni G, Berthoux F, Boulharouz R, Egido J, Alcazar R (1995) IgA serology in recurrent and non-recurrent IgA nephropathy after renal transplantation. Nephrol Dial Transplant 10:2310–2315

    PubMed  CAS  Google Scholar 

  10. Julian BA, Said M, Barker CV (1998) Allograft loss in IgA nephropathy. J Am Soc Nephrol 9:91A

    Google Scholar 

  11. Odum J, Peh CA, Clarkson AR, Bannister KM, Seymour AE, Gillis D, Thomas AC, Mathew TH, Woodroffe AJ (1994) Recurrent mesangial IgA nephritis following renal transplantation. Nephrol Dial Transplant 9:309–312

    PubMed  CAS  Google Scholar 

  12. Soler MJ, Mir M, Rodriguez E, Orfila A, Munne A, Vazquez S, Lloveras J, Puig JM (2005) Recurrence of IgA nephropathy and Henoch-Schoenlein purpura after kidney transplantation: risk factors and graft survival. Transplant Proc 37:3705–3709

    Article  PubMed  CAS  Google Scholar 

  13. Meulders Q, Pirson Y, Cosyns JP, Squifflet JP, van Ypersele de Strihou C (1994) Course of Henoch-Schoenlein nephritis after renal transplantation. Report on ten patients and review of the literature. Transplantation 58:1179–1186

    Article  PubMed  CAS  Google Scholar 

  14. Silva FG, Chander P, Pirani CL, Hardy MA (1982) Disappearance of glomerular mesangial IgA deposits after renal allograft transplantation. Transplantation 33:241–246

    PubMed  CAS  Google Scholar 

  15. Novak J, Julian BA, Tomana M, Mestecky J (2001) Progress in molecular and genetic studies of IgA nephropathy. J Clin Immunol 21:310–327

    Article  PubMed  CAS  Google Scholar 

  16. Barratt J, Feehally J (2005) IgA nephropathy. J Am Soc Nephrol 16:2088–2097

    Article  PubMed  CAS  Google Scholar 

  17. Coppo R, Amore A (2004) Aberrant glycosylation in IgA nephropathy (IgAN). Kidney Int 65:1544–1547

    Article  PubMed  CAS  Google Scholar 

  18. Allen AC, Bailey EM, Brenchley PEC, Buck KS, Barratt J, Feehally J (2001) Mesangial IgA1 in IgA nephropathy exhibits aberrant O-glycosylation: observations in three patients. Kidney Int 60:969–973

    Article  PubMed  CAS  Google Scholar 

  19. Hiki Y, Odani H, Takahashi M, Yasuda Y, Nishimoto A, Iwase H, Shinzato T, Kobayashi Y, Maeda K (2001) Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy. Kidney Int 59:1077–1085

    Article  PubMed  CAS  Google Scholar 

  20. Tomana M, Novak J, Julian BA, Matousovic K, Konecny K, Mestecky J (1999) Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest 104:73–81

    PubMed  CAS  Google Scholar 

  21. Novak J, Vu HL, Novak L, Julian BA, Mestecky J, Tomana M (2002) Interactions of human mesangial cells with IgA and IgA-containing circulating immune complexes. Kidney Int 62:465–475

    Article  PubMed  CAS  Google Scholar 

  22. Novak J, Tomana M, Matousovic K, Brown R, Hall S, Novak L, Julian BA, Wyatt RJ, Mestecky J (2005) IgA1-containing immune complexes in IgA nephropathy differentially affect proliferation of mesangial cells. Kidney Int 67:504–513

    Article  PubMed  CAS  Google Scholar 

  23. Amore A, Cirina P, Conti G, Brusa P, Peruzzi L, Coppo R (2001) Glycosylation of circulating IgA in patients with IgA nephropathy modulates proliferation and apoptosis of mesangial cells. J Am Soc Nephrol 12:1862–1871

    PubMed  CAS  Google Scholar 

  24. Moura IC, Arcos-Fajardo M, Sadaka C, Leroy V, Benhamou M, Novak J, Vrtovsnik F, Haddad E, Chintalacharuvu KR, Monteiro RC (2004) Glycosylation and size of IgA1 are essential for interaction with mesangial transferrin receptor in IgA nephropathy. J Am Soc Nephrol 15:622–634

    Article  PubMed  CAS  Google Scholar 

  25. Haas M (1997) Histologic subclassification of IgA nephropathy: a clinicopathologic study of 244 cases. Am J Kidney Dis 29:829–842

    PubMed  CAS  Google Scholar 

  26. D’Amico G (2000) Natural history of idiopathic IgA nephropathy: role of clinical and histological prognostic factors. Am J Kidney Dis 36:227–237

    PubMed  CAS  Google Scholar 

  27. Julian BA, Novak J (2004) IgA nephropathy: an update. Curr Opin Nephrol Hypertens 13:171–179

    Article  PubMed  CAS  Google Scholar 

  28. Julian BA, Tomana M, Novak J, Mestecky J (1999) Progress in the pathogenesis of IgA nephropathy. Adv Nephrol Necker Hosp 29:53–72

    PubMed  CAS  Google Scholar 

  29. Eiro M, Katoh T, Watanabe T (2005) Risk factors for bleeding complications in percutaneous renal biopsy. Clin Exp Nephrol 9:40–45

    Article  PubMed  Google Scholar 

  30. Koyama A, Igarashi M, Kobayashi M (1997) Natural history and risk factors for immunoglobulin A nephropathy in Japan. Research group on progressive renal diseases. Am J Kidney Dis 29:526–532

    PubMed  CAS  Google Scholar 

  31. Hrvacevic R, Topalov D, Stojanovic R, Lilic D, Dimitrijevic J, Maksic D, Maric M (1996) Serum and urinary interleukin-6 levels in patients with primary glomerulonephritis. Srp Arh Celok Lek 124:40–42

    PubMed  Google Scholar 

  32. Harada K, Akai Y, Kurumatani N, Iwano M, Saito Y (2002) Prognostic value of urinary interleukin 6 in patients with IgA nephropathy: an 8-year follow-up study. Nephron 92:824–826

    Article  PubMed  CAS  Google Scholar 

  33. Ranieri E, Gesualdo L, Petrarulo F, Schena FP (1996) Urinary IL-6/EGF ratio: a useful prognostic marker for the progression of renal damage in IgA nephropathy. Kidney Int 50:1990–2001

    Article  PubMed  CAS  Google Scholar 

  34. Grandaliano G, Gesualdo L, Ranieri E, Monno R, Montinaro V, Marra F, Schena FP (1996) Monocyte chemotactic peptide-1 expression in acute and chronic human nephritides: a pathogenetic role in interstitial monocytes recruitment. J Am Soc Nephrol 7:906–913

    PubMed  CAS  Google Scholar 

  35. Huang F, Horikoshi S, Kurusu A, Shibata T, Suzuki S, Funabiki K, Shirato I, Tomino Y (2001) Urinary levels of interleukin-8 (IL-8) and disease activity in patients with IgA nephropathy. J Clin Lab Anal 15:30–34

    Article  PubMed  Google Scholar 

  36. Machii R, Sakatume M, Kubota R, Kobayashi S, Gejyo F, Shiba K (2005) Examination of the molecular diversity of alpha1 antitrypsin in urine: deficit of an alpha1 globulin fraction on cellulose acetate membrane electrophoresis. J Clin Lab Anal 19:16–21

    Article  PubMed  CAS  Google Scholar 

  37. Mitsuhashi H, Tsukada Y, Ono K, Yano S, Naruse T (1993) Urine glycosaminoglycans and heparan sulfate excretions in adult patients with glomerular diseases. Clin Nephrol 39:231–238

    PubMed  CAS  Google Scholar 

  38. Morita Y, Ikeguchi H, Nakamura J, Hotta N, Yuzawa Y, Matsuo S (2000) Complement activation products in the urine from proteinuric patients. J Am Soc Nephrol 11:700–707

    PubMed  CAS  Google Scholar 

  39. Kusunoki Y (1990) Terminal complement complex (TTC) levels in plasma and urine from glomerular diseases: enzyme-linked immunosorbent assay (ELISA) using monoclonal antibody against neoantigens of TCC. Hokkaido Igaku Zasshi 65:74–85

    PubMed  CAS  Google Scholar 

  40. Galla JH, Spotswood MF, Harrison LA, Mestecky J (1985) Urinary IgA in IgA nephropathy and Henoch-Schönlein purpura. J Clin Immunol 5:298–306

    Article  PubMed  CAS  Google Scholar 

  41. Halling SFE, Söderberg MP, Berg UB (2005) Henoch-Schönlein nephritis: clinical findings related to renal function and morphology. Pediatr Nephrol 20:46–51

    Article  PubMed  Google Scholar 

  42. Roccatello D, Picciottoh G, Torchio M, Ropolo R, Ferro M, Franceschini R, Quattrocchio G, Cacace G, Coppo R, Sena LM, et al (1993) Removal systems of immunoglobulin A and immunoglobulin A containing complexes in IgA nephropathy and cirrhosis patients. The role of asialoglycoprotein receptors. Lab Invest 69:714–723

    PubMed  CAS  Google Scholar 

  43. Wu CG, Budhu A, Chen S, Zhou X, Popescu NC, Valerie K, Wang XW (2006) Effect of hepatitis C virus core protein on the molecular profiling of human B lymphocytes. Mol Med 12:47–53

    PubMed  CAS  Google Scholar 

  44. Sene D, Limal N, Ghillani-Dalbin P, Saadoun D, Piette JC, Cacoub P (2007) Hepatitis C virus-associated B-cell proliferation—the role of serum B lymphocyte stimulator (BLyS/BAFF). Rheumatology (Oxford) 46:65–69

    Article  CAS  Google Scholar 

  45. McGuire BM, Julian BA, Bynon JS Jr, Cook WJ, King SJ, Curtis JJ, Accortt NA, Eckhoff DE (2006) Glomerulonephritis in patients with hepatitis C cirrhosis undergoing liver transplantation. Ann Intern Med 144:735–741

    PubMed  Google Scholar 

  46. Matousovic K, Novak J, Tomana M, Kulhavy R, Julian BA, Mestecky J (2006) IgA1-containing immune complexes in the urine of IgA nephropathy patients. Nephrol Dial Transplant 21:2478–2484

    Article  PubMed  CAS  Google Scholar 

  47. Pisitkun T, Shen RF, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA 101:13368–13373

    Article  PubMed  CAS  Google Scholar 

  48. Theodorescu D, Fliser D, Wittke S, Mischak H, Krebs R, Walden M, Ross M, Eltze E, Bettendorf O, Wulfing C, et al (2005) Pilot study of capillary electrophoresis coupled to mass spectrometry as a tool to define potential prostate cancer biomarkers in urine. Electrophoresis 26:2797–2808

    Article  PubMed  CAS  Google Scholar 

  49. Theodorescu D, Wittke S, Ross MM, Walden M, Conaway M, Just I, Mischak H, Frierson HF (2006) Discovery and validation of new protein biomarkers for urothelial cancer: a prospective analysis. Lancet Oncol 7:230–240

    Article  PubMed  CAS  Google Scholar 

  50. Thongboonkerd V, Songtawee N, Sritippayawan S (2007) Urinary proteome profiling using microfluidic technology on a chip. J Proteome Res 6:2011–2018

    Article  PubMed  CAS  Google Scholar 

  51. Fliser D, Novak J, Thongboonkerd V, Argilés À, Jankowski V, Girolami MA, Jankowski J, Mischak H (2007) Advances in urinary proteome analysis and biomarker discovery. J Am Soc Nephrol 18:1057–1071

    Article  PubMed  CAS  Google Scholar 

  52. Kolch W, Mischak H, Chalmers MJ, Pitt A, Marshall AG (2004) Clinical proteomics: a question of technology. Rapid Commun Mass Spectrom 18:2365–2366

    Article  PubMed  CAS  Google Scholar 

  53. Mischak H, Apweiler R, Banks RE, Conaway M, Coon J, Dominiczak A, Ehrich JHH, Fliser D, Girolami M, Goodsaid F, et al (2007) Clinical proteomics: a need to define the field and to begin to set adequate standards. Proteomics Clin Appl 1:148–156

    Article  CAS  Google Scholar 

  54. Zhou H, Pisitkun T, Aponte A, Yuen PS, Hoffert JD, Yasuda H, Hu X, Chawla L, Shen RF, Knepper MA, et al (2006) Exosomal Fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney injury. Kidney Int 70:1847–1857

    Article  PubMed  CAS  Google Scholar 

  55. Weissinger EM, Kaiser T, Meert N, De Smet R, Walden M, Mischak H, Vanholder RC (2004) Proteomics: a novel tool to unravel the patho-physiology of uraemia. Nephrol Dial Transplant 19:3068–3077

    Article  PubMed  CAS  Google Scholar 

  56. Issaq HJ (2001) The role of separation science in proteomics research. Electrophoresis 22:3629–3638

    Article  PubMed  CAS  Google Scholar 

  57. Yokota H, Hiramoto M, Okada H, Kanno Y, Yuri M, Morita S, Naitou M, Ichikawa A, Katoh M, Suzuki H (2007) Absence of increased alpha-1-microglobulin in IgA nephropathy proteinuria. Mol Cell Proteomics 6:738–744

    Article  PubMed  CAS  Google Scholar 

  58. Yasuda Y, Horie A, Odani H, Iwase H, Hiki Y (2004) Application of mass spectrometry to IgA nephropathy: structural and biological analyses of underglycosylated IgA1 molecules. Contrib Nephrol 141:170–188

    PubMed  CAS  Google Scholar 

  59. Klein E, Klein JB, Thongboonkerd V (2004) Two-dimensional gel electrophoresis: a fundamental tool for expression proteomics studies. Contrib Nephrol 141:25–39

    PubMed  CAS  Google Scholar 

  60. Klein JB, Thongboonkerd V (2004) Overview of proteomics. Contrib Nephrol 141:1–10

    PubMed  CAS  Google Scholar 

  61. Thongboonkerd V, Klein JB, Jevans AW, McLeish KR (2004) Urinary proteomics and biomarker discovery for glomerular diseases. Contrib Nephrol 141:292–307

    Article  PubMed  CAS  Google Scholar 

  62. Hewitt SM, Dear J, Star RA (2004) Discovery of protein biomarkers for renal diseases. J Am Soc Nephrol 15:1677–1689

    Article  PubMed  Google Scholar 

  63. Novak J, Wittke S, Haubitz M, Walden M, Moldoveanu Z, Nichols CR, Kirksey C, Lee J, Hall S, Brown R, et al (2005) Urinary protein analyses reveal patterns and biomarkers specific for IgA nephropathy (IgAN). J Am Soc Nephrol 16:155

    Article  CAS  Google Scholar 

  64. Schiffer E, Mischak H, Novak J (2006) High resolution proteome/peptidome analysis of body fluids by capillary electrophoresis coupled with mass spectrometry. Proteomics 6:5615–5627

    Article  PubMed  CAS  Google Scholar 

  65. Kolch W, Neususs C, Pelzing M, Mischak H (2005) Capillary electrophoresis–mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery. Mass Spectrom Rev 24:959–977

    Article  PubMed  CAS  Google Scholar 

  66. Wittke S, Mischak H, Walden M, Kolch W, Radler T, Wiedemann K (2005) Discovery of biomarkers in human urine and cerebrospinal fluid by capillary electrophoresis coupled to mass spectrometry: towards new diagnostic and therapeutic approaches. Electrophoresis 26:1476–1487

    Article  PubMed  CAS  Google Scholar 

  67. Wittke S, Fliser D, Haubitz M, Bartel S, Krebs R, Hausadel F, Hillmann M, Golovko I, Koester P, Haller H, et al (2003) Determination of peptides and proteins in human urine with capillary electrophoresis–mass spectrometry, a suitable tool for the establishment of new diagnostic markers. J Chromatogr A 1013:173–181

    Article  PubMed  CAS  Google Scholar 

  68. Mischak H, Kaiser T, Walden M, Hillmann M, Wittke S, Herrmann A, Knueppel S, Haller H, Fliser D (2004) Proteomic analysis for the assessment of diabetic renal damage in humans. Clin Sci (Lond) 107:485–495

    Article  CAS  Google Scholar 

  69. Haubitz M, Wittke S, Weissinger EM, Walden M, Rupprecht HD, Floege J, Haller H, Mischak H (2005) Urine protein patterns can serve as diagnostic tools in patients with IgA nephropathy. Kidney Int 67:2313–2320

    Article  PubMed  CAS  Google Scholar 

  70. Neuhoff N, Kaiser T, Wittke S, Krebs R, Pitt A, Burchard A, Sundmacher A, Schlegelberger B, Kolch W, Mischak H (2004) Mass spectrometry for the detection of differentially expressed proteins: a comparison of surface-enhanced laser desorption/ionization and capillary electrophoresis/mass spectrometry. Rapid Commun Mass Spectrom 18:149–156

    Article  PubMed  CAS  Google Scholar 

  71. Zürbig P, Renfrow MB, Schiffer E, Novak J, Walden M, Wittke S, Just I, Pelzing M, Neusüß C, Theodorescu D, et al (2006) Biomarker discovery by CE–MS enables sequence analysis via tandem mass spectrometry with platform-independent separation. Electrophoresis 27:2111–2125

    Article  PubMed  CAS  Google Scholar 

  72. Julian BA, Wittke S, Novak J, Coon JJ, Zürbig P, Schiffer E, Haubitz M, Moldoveanu Z, Calcatera SM, Wyatt RJ, et al (2007) Electrophoretic methods for analysis of urinary polypeptides in IgA-associated renal diseases. Electrophoresis (in press)

  73. Park MR, Wang EH, Jin DC, Cha JH, Lee KH, Yang CW, Kang CS, Choi YJ (2006) Establishment of a 2-D human urinary proteomic map in IgA nephropathy. Proteomics 6:1066–1076

    Article  PubMed  CAS  Google Scholar 

  74. Aebersold R, Goodlett DR (2001) Mass spectrometry in proteomics. Chem Rev 101:269–295

    Article  PubMed  CAS  Google Scholar 

  75. Morrison RS, Kinoshita Y, Johnson MD, Uo T, Ho JT, McBee JK, Conrads TP, Veenstra TD (2002) Proteomic analysis in the neurosciences. Mol Cell Proteomics 1:553–560

    Article  PubMed  CAS  Google Scholar 

  76. Yanagida M (2002) Functional proteomics: current achievements. J Chromatogr B Analyt Technol Biomed Life Sci 771:89–106

    Article  PubMed  CAS  Google Scholar 

  77. Baggerly KA, Morris JS, Coombes KR (2004) Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments. Bioinformatics 20:777–785

    Article  PubMed  CAS  Google Scholar 

  78. Baggerly KA, Morris JS, Edmonson SR, Coombes KR (2005) Signal in noise: evaluating reported reproducibility of serum proteomic tests for ovarian cancer. J Natl Cancer Inst 97:307–309

    Article  PubMed  CAS  Google Scholar 

  79. Check E (2004) Proteomics and cancer: running before we can walk? Nature 429:496–497

    Article  PubMed  CAS  Google Scholar 

  80. Candiano G, Musante L, Bruschi M, Petretto A, Santucci L, Del Boccio P, Pavone B, Perfumo F, Urbani A, Scolari F, et al (2006) Repetitive fragmentation products of albumin and α1-antitrypsin in glomerular diseases associated with nephrotic syndrome. J Am Soc Nephrol 17:3139–3148

    Article  PubMed  CAS  Google Scholar 

  81. Barratt J, Feehally J, Smith AC (2004) Pathogenesis of IgA nephropathy. Semin Nephrol 24:197–217

    Article  PubMed  CAS  Google Scholar 

  82. Couchman JR, Beavan LA, McCarthy KJ (1994) Glomerular matrix: synthesis, turnover and role in mesangial expansion. Kidney Int 45:328–335

    Article  PubMed  CAS  Google Scholar 

  83. Gauer S, Yao J, Schoecklmann HO, Sterzel RB (1997) Adhesion molecules in the glomerular mesangium. Kidney Int 51:1447–1453

    Article  PubMed  CAS  Google Scholar 

  84. Kanahara K, Yorioka N, Ogawa T, Taniguchi Y, Takemasa A, Hirabayashi A, Yamakido M (1994) An immunohistochemical study of extracellular matrix components and integrins in human glomerular diseases. Nippon Jinzo Gakkai Shi 36:355–364

    PubMed  CAS  Google Scholar 

  85. Rupprecht HD, Schöcklmann HO, Sterzel RB (1996) Cell-matrix interactions in the glomerular mesangium. Kidney Int 49:1575–1582

    Article  PubMed  CAS  Google Scholar 

  86. Sterzel RB, Schulze-Lohoff E, Weber M, Goodman SL (1992) Interactions between glomerular mesangial cells, cytokines, and extracellular matrix. J Am Soc Nephrol 2:S126–S131

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants DK61525, DK71802, DK78244, and DK64400 from the National Institutes of Health and by General Clinical Research Center of the University of Alabama at Birmingham (M01 RR00032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Julian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Julian, B.A., Wittke, S., Haubitz, M. et al. Urinary biomarkers of IgA nephropathy and other IgA-associated renal diseases. World J Urol 25, 467–476 (2007). https://doi.org/10.1007/s00345-007-0192-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-007-0192-5

Keywords

Navigation