Skip to main content
Log in

Melatonin Promotes Seed Germination via Regulation of ABA Signaling Under Low Temperature Stress in Cucumber

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Abscisic acid (ABA) is an important phytohormone that regulates seed germination, dormancy, and plant responses to stresses such as salt, drought, and cold. Melatonin regulates ABA biosynthesis and catabolism during seed germination under various types of stress; however, the transcriptional regulation of ABA signaling genes by melatonin during cucumber seed germination under low temperature (LT, 15 °C) stress is poorly understood. Here we report that melatonin promoted seed germination under LT stress by decreasing ABA content and increasing the gibberellic acid (GA)/ABA ratio (gibberellic acid, GA). We also examined the expression levels of the ABA receptors PYR/PYL/RCAR (PYL), as well as the negative regulator protein phosphatase type 2C (PP2C) and positive regulator subfamily 2 of SNF1-related kinase (SnRK2) by real-time PCR. The expression of most tested genes increased during seed germination, showing an opposite trend to ABA level. The transcript levels of CsPYL1, CsPYL2, CsPYL3, CsPYL8, and CsPYL10 in 10 μM melatonin-pretreated seeds were significantly increased after 6 h of imbibition as a result of feedback regulation caused by the lack of ABA, and CsPP2C3, CsPP2C5, and CsSnRK2.1 exhibited higher expression levels than CK (control) treatment. The expression of most tested genes changed markedly in the initial water uptake phase (12 h after imbibition), suggesting that this period is critical for the regulation of ABA signaling during seed germination. We speculate that melatonin reduces ABA content, preventing CsPYL (CsPYL1/2/3/8/10) binding to CsPP2C and thereby enhancing the activity of CsPP2C (CsPP2C3/5) and blocking CsSnRK2.1 activation. Phosphorylation of the downstream factors ABA-responsive element-binding factor (ABF)/ABA-responsive element-binding protein (AREB) by CsSnRK2.1 is thus abolished, leading to seed germination under LT stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 31902022), the youth fund of BAAFS (QNJJ201915), the Science and Technology Innovation Capacity Project of BAAFS (KJCX20200212, KJCX20200113).

Author information

Authors and Affiliations

Authors

Contributions

HZ, YQ, and PW conceived and designed research. HZ, YJ, and XW conducted experiments, analyzed data, and wrote the manuscript. HZ, XX, and PW modified the paper.

Corresponding authors

Correspondence to Xiulan Xu or Ping Wu.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest in publishing this manuscript.

Additional information

Handling Editor: Vijay Pratap Singh.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Supplementary file2 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Qiu, Y., Ji, Y. et al. Melatonin Promotes Seed Germination via Regulation of ABA Signaling Under Low Temperature Stress in Cucumber. J Plant Growth Regul 42, 2232–2245 (2023). https://doi.org/10.1007/s00344-022-10698-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10698-y

Keywords

Navigation