Skip to main content

Advertisement

Log in

Amelioration of Morpho-structural and Physiological Disorders in Micropropagation of Aloe vera L. by Use of an Aromatic Cytokinin 6-(3-Hydroxybenzylamino) Purine

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

An in vitro regeneration method with functional morpho-structural and physiological traits has been optimized for Aloe vera L. in the present study. Among the various types and treatments of cytokinins [6-benzylaminopurine, BAP; 6-(3-hydroxybenzylamino) purine, mT (meta-topolin), and 1-phenyl-3-(1,2,3-thiadiazol-5-yl) urea, TDZ] tested for shoot induction, the best bud break response (100%) occurred on the Murashige and Skoog (MS) medium containing 1.0 mg L−1 mT with the development of 5.0 shoots with 3.3 cm average length. Liquid MS medium containing a standardized combination of 0.5 mg L−1 mT with 0.25 mg L−1 α-naphthalene acetic acid (NAA) triggered proliferation of shoots, and maximum 42 shoots with 5.6 cm average length were obtained after 3rd subculture. Meta-topolin and NAA-derived shoots cultured on half strength MS medium containing 1.0 mg L−1 Indole-3-butyric acid (IBA) resulted in maximum rhizogenesis than BAP + NAA and TDZ + NAA-derived shoots. Meta-topolin and NAA combination improved photo-pigments, net rate of photosynthesis, and morpho-anatomy of leaves as compared with other treatments. The rate of photosynthesis, transpiration, and field survival was significantly affected by the types and concentrations of cytokinins used during plantlet development. The present findings unraveled the potential of meta-topolin to alleviate in vitro induced morpho-structural and physiological anomalies and improved survival of micropropagated plantlets of A. vera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated during the current study.

References

  • Aggarwal D, Kumar A, Kumar A (2019) Plant tissue culture for commercial propagation of economically important plants. Ind Biotechnol. https://doi.org/10.1515/9783110563337-007

    Article  Google Scholar 

  • Ahmad A, Anis M (2019) Meta-topolin improves in vitro morphogenesis, rhizogenesis and biochemical analysis in Pterocarpus marsupium Roxb.: a potential drug-yielding tree. J Plant Growth Regul 38:1007–1016

    CAS  Google Scholar 

  • Ahmed S, Kabir AH, Ahmed MB, Razvy MA, Ganesan S (2007) Development of rapid micropropagation method of Aloe vera L. Sjemenarstvo 24:121–128

    Google Scholar 

  • Amoo SO, Aremu AO, Van Staden J (2012) In vitro plant regeneration, secondary metabolite production and antioxidant activity of micropropagated Aloe arborescens Mill. Plant Cell Tiss Org Cult 111:345–358

    CAS  Google Scholar 

  • Amoo SO, Aremu AO, Moyo M, Szüčová L, Doležal K, Van Staden J (2014) Physiological effects of a novel aromatic cytokinin analogue in micropropagated Aloe arborescens and Harpagophytum procumbens. Plant Cell Tiss Org Cult 116:17–26. https://doi.org/10.1007/s11240-013-0377-0

    Article  CAS  Google Scholar 

  • Asayesh ZM, Vahdati K, Aliniaeifard S, Askari N (2017) Enhancement of ex vitro acclimation of walnut plantlets through modification of stomatal characteristics in vitro. Sci Hortic 220:114–121

    Google Scholar 

  • Bairu MW, Stirk WA, Dolezal K, Van Staden J (2007) Optimizing the micropropagation protocol for the endangered Aloe polyphylla: can meta-topolin and its derivatives serve as replacement for benzyladenine and zeatin? Plant Cell Tiss Org Cult 90:15–23. https://doi.org/10.1007/s11240-007-9233-4

    Article  CAS  Google Scholar 

  • Bairu MW, Kulkarni MG, Street RA, Mulaudzi RB, Van Staden J (2009) Studies on seed germination, seedling growth, and in vitro shoot induction of Aloe ferox Mill., a commercially important species. HortScience 44:751–756

    Google Scholar 

  • Baksha R, Jahan MAA, Khatun R, Munshi JL (2005) Micropropagation of Aloe barbadensis Mill. through in vitro culture of shoot tip explants. Plant Tiss Cult Biotech 15:121–126

    Google Scholar 

  • Bidabadi SS, Jain SM (2020) Cellular, molecular, and physiological aspects of in vitro plant regeneration. Plants 9:702. https://doi.org/10.3390/plants9060702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas BC (2010) Cultivation of medicinal plant. Indian Fert Market News 41:1–4

    Google Scholar 

  • Boudreau MD, Olson GR, Tryndyak VP, Bryant MS, Felton RP, Beland FA (2017) From the cover: Aloin, a component of the Aloe vera plant leaf, induces pathological changes and modulates the composition of microbiota in the large intestines of F344/N male rats. Toxicol Sci 158:302–318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan RD, Taylor NJ (2018) Meta-topolin stimulates de novo shoot organogenesis and plant regeneration in cassava. Plant Cell Tiss Org Cult 132:219–224

    CAS  Google Scholar 

  • Dammak I, Lasram S, Hamdi Z, Moussa OB, Hammi KM, Trigui I, Houissa H, Mliki A, Hassouna M (2018) In vitro antifungal and anti-ochratoxigenic activities of Aloe vera gel against Aspergillus carbonarius isolated from grapes. Ind Crops Prod 123:416–423

    CAS  Google Scholar 

  • Daneshvar MH, Moallemi N, Abdolah Zadeh N (2013) The effects of different media on shoot proliferation from the shoot tip of Aloe vera L. Jundishapur J Nat Pharm Prod 8(2):93–97

    PubMed  PubMed Central  Google Scholar 

  • Das J, Bora S, Das M, Pathak P (2018) A review on in vitro culture of Aloe vera, type of explants and impact of growing media and growth regulators. Int J Curr Microbiol App Sci 7:3473–3489

    Google Scholar 

  • de Souza RR, de Oliveira Paiva PD, de Souza AR, da Silva RR, da Silva DPC, dos Reis MV, Paiva R (2021) Morpho-anatomical changes and antioxidant enzyme activity during the acclimatization of Genipa americana. Acta Physiol Plant 43:93. https://doi.org/10.1007/s11738-021-03263-9

    Article  CAS  Google Scholar 

  • Dewir YH, Nurmansyah Naidoo Y, Teixeira da Silva JA (2018) Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Rep 37:1451–1470

    CAS  PubMed  Google Scholar 

  • Dhiman N, Devi K, Bhattacharya A (2021) Development of low cost micropropagation protocol for Nardostachys jatamansi: A critically endangered medicinal herb of Himalayas. S Afr J Bot. https://doi.org/10.1016/j.sajb.2021.04.002

    Article  Google Scholar 

  • Dirbaba TD (2014) Aloe soap value chain initiative and its effect on livelihood diversification strategy: the case of pastoralists and agro-pastoralists of Borana, Southern Ethiopia. J Agri Dev 4:86–135

    Google Scholar 

  • Dixit D, Jakhar ML, Ahmad S, Chahar S, Mtilimbanya KY, Jat HR (2020) Influence of different explants on micropropagation of gwarpatha [Aloe vera (L.) Burm.]. The Pharma Inn J 9:45–47

    Google Scholar 

  • Dobránszki J, Teixeira da Silva JA (2010) Micropropagation of apple: a review. Biotechnol Adv 28:462–488. https://doi.org/10.1016/j.biotechadv.2010.02.008

    Article  CAS  PubMed  Google Scholar 

  • Eshun K, He Q (2004) Aloe vera: a valuable ingredient for the food, pharmaceutical and cosmetic industries—a review. Crit Rev Food Sci Nutr 44(2):91–96

    PubMed  Google Scholar 

  • Fan Y, Chen J, Wang Z, Tan T, Li S, Li J, Wang B, Zhang J, Cheng Y, Wu X, Yang W, Yang F (2019) Soybean (Glycine max L Merr) seedlings response to shading: leaf structure, photosynthesis and proteomic analysis. BMC Plant Biol 19:34. https://doi.org/10.1186/s12870-019-1633-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Figueiredo JRM, Paiva PDO, Silva DPC, Paiva R, Mesquita R, Souza RR, Reis MV (2021) Temperature and GA3 on ROS and cytogenetic stability during in vitro cultivation of strelitzia zygotic embryos. Ci Agrotecnol 45:e020220. https://doi.org/10.1590/1413-7054202145020220

    Article  CAS  Google Scholar 

  • Foster M, Hunter D, Samman S (2011) Evaluation of the nutritional and metabolic effects of Aloe vera. In: Benzie IFF, Wachtel-Galor S (eds) Herbal medicine: biomolecular and clinical aspects, 2nd edn. CRC Press/Taylor & Francis, Boca Raton, FL

  • Gantait S, Mitra M (2021) Role of meta-topolin on in vitro shoot regeneration: an insight. In: Ahmad N, Strnad M (eds) Meta-topolin: a growth regulator for plant biotechnology and agriculture. Springer, Singapore. pp 143–168. https://doi.org/10.1007/978-981-15-9046-7_12

  • Gantait S, Sinniah UR, Das PK (2014) Aloe vera: a review update on advancement of in vitro culture. Agr Scand B Soil Plant Sci 64:1–12

    CAS  Google Scholar 

  • Gao Y, Kuok KI, Jin Y, Wang R (2018) Biomedical applications of Aloe vera. Crit Rev Food Sci Nutr 13:1–13

    CAS  Google Scholar 

  • Gentile A, Jàquez Gutiérrez M, Martinez J, Frattarelli A, Nota P, Caboni E (2014) Effect of meta-Topolin on micropropagation and adventitious shoot regeneration in Prunus rootstocks. Plant Cell Tiss Org Cult 118:373–381

    CAS  Google Scholar 

  • Gonçalves S, Martins N, Romano A (2017) Physiological traits and oxidative stress markers during acclimatization of micropropagated plants from two endangered Plantago species: P. algarbiensis Samp. and P. almogravensis Franco. Vitro Cell Dev Bio Plant 53:249–255

    Google Scholar 

  • Govaerts R (2017) World checklist of Xanthorrhoeaceae. Richmond, UK royal botanic gardens, Kew. http://apps.kew.org/wcsp/. Accessed 22 June 2021

  • Grace OM, Buerki S, Symonds MR, Forest F, van Wyk AE, Smith GF, Klopper RR, Bjora CS, Neale S, Demissew S, Simmonds MSJ, Ronsted N (2015) Evolutionary history and leaf succulence as explanations for medicinal use in aloes and the global popularity of Aloe vera. BMC Evol Biol 15:29. https://doi.org/10.1186/s12862-015-0291-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Sahu PK, Sen DL, Pandey P (2014) In-vitro propagation of Aloe vera (L.) Burm.f. British Biotechnol J 4:806–816

    CAS  Google Scholar 

  • Haque SM, Ghosh B (2013) High frequency microcloning of Aloe vera and their true-to-type conformity by molecular cytogenetic assessment of two years old field growing regenerated plants. Bot Stud. https://doi.org/10.1186/1999-3110-54-46

    Article  PubMed  PubMed Central  Google Scholar 

  • Hazarika BN (2006) Morpho-physiological disorders in in vitro culture of plants. Sci Hortic 108:105–120

    CAS  Google Scholar 

  • Hekmatpou D, Mehrabi F, Rahzani K, Aminiyan A (2019) The effect of Aloe vera clinical trials on prevention and healing of skin wound: a systematic review. Iran J Med Sci 44(1):1–9

    PubMed  Google Scholar 

  • Işlek C (2021) Effect of meta-topolins on senescence. In: Ahmad N, Strnad M (eds) Meta-topolin: meta-topolin: a growth regulator for plant biotechnology and agriculture. Springer, Singapore, pp 59–69. https://doi.org/10.1007/978-981-15-9046-7_7

  • Jayaprakash K, Manokari M, Badhepuri MK, Cokulraj M, Dey A, Shekhawat MS (2021) Influence of meta-topolin on in vitro propagation and foliar micro-morpho-anatomical developments of Oxystelma esculentum (L.f.)Sm. Plant Cell Tiss Organ Cult 147:325–337. https://doi.org/10.1007/s11240-021-02126-y

    Article  CAS  Google Scholar 

  • Jogam P, Sandhya D, Shekhawat MS, Alok A, Manokari M, Abbagani S, Allini VR (2020) Genetic stability analysis using DNA barcoding and molecular markers and foliar micro-morphological analysis of in vitro regenerated and in vivo grown plants of Artemisia vulgaris L. Ind Crops Prod 151:112476. https://doi.org/10.1016/j.indcrop.2020.112476

    Article  CAS  Google Scholar 

  • Khan P, Kozaim T, Nguyenm Q, Kubotam C, Dhawanm V (2003) Growth and water relations of Paulownia fortunei under photomixotrophic and photoautotrophic conditions. Biol Plant 46:161–166

    CAS  Google Scholar 

  • Koç E (2021). Effects of meta-topolin on the growth, physiological and biochemical parameters in plant tissue culture. In: Ahmad N, Strnad M (eds) Meta-topolin: Meta-topolin: a growth regulator for plant biotechnology and agriculture. Springer, Singapore, pp 265–278. https://doi.org/10.1007/978-981-15-9046-7_19

  • Kucharska D, Orlikowska T, Maciorowski R, Kunka M, Wójcik D, Pluta S (2020) Application of meta-topolin for improving micropropagation of gooseberry (Ribes grossularia). Sci Hort 272:109529. https://doi.org/10.1016/j.scienta.2020.109529

    Article  CAS  Google Scholar 

  • Kumar R, Singh AK, Gupta A, Bishayee A, Pandey AK (2019) Therapeutic potential of Aloe vera: a miracle gift of nature. Phytomedicine. https://doi.org/10.1016/j.phymed.2019.152996

    Article  PubMed  Google Scholar 

  • Kumari A, Naseem M (2015) An efficient protocol for micropropagation of a medicinal plant Aloe vera L. through organ culture. J Indian Bot Soc 94:118–125

    Google Scholar 

  • Lavakumaran L, Seran TH (2014) Effect of 6-benzyl-aminopurine and thidiazuron on in vitro shoot organogenesis of Aloe vera (L.) Burm.f. Chil J Agric Res 74:497–501

    Google Scholar 

  • Liontakis A, Tzouramani I (2016) Economic sustain ability of organic Aloe vera farming in Greece under risk and uncertainty. Sustainability 8:338. https://doi.org/10.3390/su8040338

    Article  Google Scholar 

  • Luna CV, Gonzalez AM, Mroginski LA, Sansberro PA (2017) Anatomical and histological features of Ilex paraguariensis leaves under different in vitro shoot culture systems. Plant Cell Tiss Org Cult 129:457–467

    Google Scholar 

  • Manokari M, Latha R, Priyadharshini S, Shekhawat MS (2021a) Micro-morpho-anatomical mechanisms involve in epiphytic adaptation of micropropagated plants of Vanda tessellata Roxb. (Roxb.) Hook. Ex. G. Don. Microsc Res Tech 84(4):712–722

    Google Scholar 

  • Manokari M, Priyadharshini S, Jogam P, Dey A, Shekhawat MS (2021b) Meta-topolin and liquid medium mediated enhanced micropropagation via ex vitro rooting in Vanilla planifolia Jacks. ex Andrews. Plant Cell Tiss Org Cult. https://doi.org/10.1007/s11240-021-02044-z

  • Manokari M, Priysdharashini S, Shekhawat MS (2021c) Microstructural and histochemical variations during in vitro to in vivo plant developments in Aloe vera (L.) Burm.f (Xanthorrhoeaceae). Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2020.113162

  • Mariateresa C, Maria CSC, Giuseppe C (2014) Influence of ozone treatments on in vitro propagation of Aloe barbadensis in continuous immersion bioreactor. Ind Crops Prod 55:194–201

    CAS  Google Scholar 

  • Molsaghi M, Moieni A, Kahrizi D (2014) Efficient protocol for rapid Aloe vera micropropagation. Pharmaceut Biol 52(6):735–739

    CAS  Google Scholar 

  • Moyo M, Finnie JF, Van Staden J (2011) Recalcitrant effects associated with the development of basal callus-like tissue on caulogenesis and rhizogenesis in Sclerocarya birrea. Plant Growth Regul 63:187–195

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Mutui TM, Mibus H, Serek M (2012) Effect of meta-topolin on leaf senescence and rooting in Pelargonium × hortorum cuttings. Postharvest Biol Technol 63(1):107–110. https://doi.org/10.1016/j.postharvbio.2011.09.010

    Article  CAS  Google Scholar 

  • Nowakowska K, Pacholczak A (2020) Comparison of the effect of meta-topolin and benzyladenine during Daphne mezereum L. micropropagation. Agronomy. https://doi.org/10.3390/agronomy10121994

    Article  Google Scholar 

  • Rajput B, Jani M, Ramesh K, Manokari M, Jogam P, Allini VR, Kher MM, Shekhawat MS (2020) Large-scale clonal propagation of Bambusa balcooa Roxb.: an industrially important bamboo species. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2020.112905

    Article  Google Scholar 

  • Robinson P, Britto J, Senthilkumar S (2009) Comparative anatomical studies on Emilia zeylanica C. B. Clarke with in vitro regenerated plants. Middle-East J Sci Res 4:140–143

    Google Scholar 

  • Saggoo MIS, Kaur R (2010) Studies in north Indian Aloe vera: callus induction regeneration of plantlets. Arch Appl Sci Res 2:241–245

    CAS  Google Scholar 

  • Sahoo S, Rout GR (2014) Plant regeneration from leaf explants of Aloe barbadensis Mill. and genetic fidelity assessment through DNA markers. Physiol Mol Biol Plants 20:235–240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salehi B, Albayrak S, Antolak H, Kręgiel D, Pawlikowska E, Sharifi-Rad M, Uprety Y, Tsouh Fokou PV, Yousef Z, Amiruddin Zakaria Z, Varoni EM, Sharopov F, Martins N, Iriti M, Sharifi-Rad J (2018) Aloe genus plants: from farm to food applications and phytopharmacotherapy. Int J Mol Sci 19(9):2843. https://doi.org/10.3390/ijms19092843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez M, González-Burgos E, Iglesias I, Gómez-Serranillos MP (2020) Pharmacological update properties of Aloe vera and its major active constituents. Molecules 25(6):1324. https://doi.org/10.3390/molecules25061324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Machado DI, López-Cervantes J, Sendón R, Sanches-Silva A (2017) Aloe vera: ancient knowledge with new frontiers. Trends Food Sci Technol 61:94–102

    Google Scholar 

  • Santos ER, Martins JPR, Rodrigues LCA, Gontijo ABPL, Falqueto AR (2020) Morphophysiological responses of Billbergia zebrine Lindl. (Bromeliaceae) in function of types and concentrations of carbohydrates during conventional in vitro culture. Ornam Hortic 26:18–34. https://doi.org/10.1590/2447-536X.v26i1.2092

    Article  Google Scholar 

  • Seran TH, Ahmad N (2018) Shoot organogenesis of Aloe plants with emphasis on TDZ. In: Ahmad N, Faisal M (eds) Thidiazuron: from urea derivative to plant growth regulator. Springer, Singapore, pp 359–376

    Google Scholar 

  • Shekhawat MS, Manokari M (2017) Comparative foliar micromorphological studies of in vitro and field transferred plants of Morinda citrifolia. Acta Bot Hung 59:427–438

    Google Scholar 

  • Shekhawat NS, Rathore MS, Shekhawat S, Choudhary SK, Phulwaria M, Harish RMK, Vibha JB, Rathore NS, Patel AK, Kataria V (2014) Micropropagation of Aloe vera for improvement and enhanced productivity. In: Tuteja N, Gill SS (eds) Climate change and abiotic stress tolerance. Wiley-VCH, Weinheim, pp 857–880

    Google Scholar 

  • Shekhawat MS, Priyadharshini S, Jogam P, Kumar V, Manokari M (2021) Meta-topolin and liquid medium enhanced in vitro regeneration in Scaevola taccada (Gaertn.) Roxb. In Vitro Cell Dev Biol Plant 57:296–306

    CAS  Google Scholar 

  • Singh M, Rathore MS, Panwar D, Rathore JS, Dagla HR, Shekhawat NS (2009) Micropropagation of selected genotype of Aloe vera L. – an ancient plant for modern industry. J Sustain Forest 28:935–950

    Google Scholar 

  • Singh CSB, Adugana DA, Rani RA (2017) A method of rapid in vitro proliferation and morphological characterization of the medicinal plant Aloe vera L. Afr J Biotechnol 16:2201–2214

    Google Scholar 

  • Singh MK, Yadav T, Raman RK (2020) A quick method for micro-propagation of Aloe vera L. from leaf explants via callus induction. J Entomol Zool Stud 8:201–206

    Google Scholar 

  • Sivakumar P, Kumar AK, Rajalakshmi K, Sangeetha R, Muthumalai M (2019) A review on in vitro propagation of miraculous physician Aloe vera (L.). Res J Biotechnol 14:126–130

    CAS  Google Scholar 

  • Su YH, Tang LP, Zhao ZY, Zhang XS (2021) Plant cell totipotency: insights into cellular reprogramming. J Integ Plant Biol 63:228–243

    CAS  Google Scholar 

  • Surafel S, Gamachu O, Abel D (2018) In vitro propagation of Aloe vera Linn from shoot tip culture. GSC Biol Pharm Sci 4:1–6

    CAS  Google Scholar 

  • Surjushe A, Vasani A, Saple DG (2008) Aloe vera: a short review. Ind J Dermatol 53:163–166

    Google Scholar 

  • Tanaka A, Tanaka R (2019) The biochemistry, physiology, and evolution of the chlorophyll cycle. In: Grimm BBTA (eds) Metabolism, structure and function of plant tetrapyrroles: introduction, microbial and eukaryotic chlorophyll synthesis and catabolism. Academic Press, Cambridge, MA, pp 183–212

  • Valero-Aracama C, Kane ME, Wilson SB, Philman NL (2010) Substitution of benzyladenine with meta-topolin during shoot multiplication increases acclimatization of difficult-and easy-to-acclimatize sea oats (Uniola paniculata L.) genotypes. Plant Growth Regul 60:43–49

    CAS  Google Scholar 

  • Varpe BD, Kulkarni AA, Mali AS (2020) Aloe vera compositions used for medicinal applications: a patent review (2013: till 2020). Recent Pat Food Nutr Agric. https://doi.org/10.2174/2212798411999201228192616

    Article  Google Scholar 

  • Werbrouck SPO, Strnad M, Van Onckelen H, Debergh P (1996) Meta-topolin, an alternative to benzyladenine in tissue culture? Physiol Plant 98:291–297

    CAS  Google Scholar 

  • Yang S, Yeh D (2008) In vitro leaf anatomy, ex vitro photosynthetic behaviors and growth of Calathea orbifolia (Linden) Kennedy plants obtained from semi-solid medium and temporary immersion systems. Plant Cell Tiss Org Cult 93:201–207

    CAS  Google Scholar 

  • Zaytseva YG, Ambros EV, Novikova TI (2021) Meta-topolin: advantages and disadvantages for in vitro propagation. In: Ahmad N, Strnad M (eds) Meta-topolin: a growth regulator for plant biotechnology and agriculture. Springer, Singapore, pp 119–141

    Google Scholar 

  • Zhang B, Chen M, Pu S, Chen L, Zhang X, Zhang J, Zhu C (2020) Identification of secondary metabolites in Tripterygium wilfordii hairy roots and culture optimization for enhancing wilforgine and wilforine production. Ind Crops Prod 148:112276. https://doi.org/10.1016/j.indcrop.2020.112276

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the Researchers Supporting Project (RSP-2021/86, King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

MM, MSS, PS, and AD: Conceptualization, investigation, methodology. MCR and MF: Data compilation and hardening of the plants. MSS, MM, AAok, and Abdulrahman A. Alatar: Writing of original draft, statistics, and revision of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Mahipal S. Shekhawat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Informed Consent

Informed consent was obtained from all individual participants included in the study. Additional informed consent was obtained from all individual participants for whom identifying information is included in this article.

Research Involved Human and Animal Rights

This research did not involve experiments with human or animal participants.

Additional information

Handling Editor: Vaclav Motyka.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manokari, M., Priyadharshini, S., Cokulraj, M. et al. Amelioration of Morpho-structural and Physiological Disorders in Micropropagation of Aloe vera L. by Use of an Aromatic Cytokinin 6-(3-Hydroxybenzylamino) Purine. J Plant Growth Regul 42, 4751–4763 (2023). https://doi.org/10.1007/s00344-022-10672-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10672-8

Keywords

Navigation