Skip to main content
Log in

Comparative Effects of Azospirillum brasilense Sp245 and Pseudomonas aeruginosa PAO1 Lipopolysaccharides on Wheat Seedling Growth and Peroxidase Activity

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The effects of lipopolysaccharides (LPS) from Azospirillum brasilense Sp245, a plant growth-promoting rhizobacteria, and Pseudomonas aeruginosa PAO1, a pathogenic bacterium, on plant growth and peroxidase (POD) activity were assessed on wheat seedlings. A. brasilense LPS (100 µg/mL) increased total length, and total fresh weight in wheat seedlings 4 days after treatment. P. aeruginosa LPS did not show effect on plant growth. A. brasilense LPS increased root hairs length similar to whole cells, while P. aeruginosa LPS increased root hairs density and slightly root hairs length. Both LPS increased POD activity and hydrogen peroxide (H2O2) content in root; however, the LPS from the pathogenic bacterium generated higher increments. The peroxidase inhibitor salicylhydroxamic acid (SHAM) inhibited plant growth, which was not recovered by the addition of LPS neither A. brasilense nor P. aeruginosa. POD activity stimulated by LPS was calcium-dependent as confirmed by the addition of the calcium channel blocker LaCl3. The results suggest that plant cells sense differentially LPS from beneficial or pathogenic bacteria and that calcium is needed to respond to the presence of both LPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ambreetha S, Chinnadurai C, Marimuthu P, Balachandar D (2018) Plant-associated Bacillus modulates the expression of auxin-responsive genes of rice and modifies the root architecture. Rhizosphere 5:57–66

    Article  Google Scholar 

  • Azevedo de Carvalho Oliveira R, Silveira de Andrade A, Oliveira Imparato D, Silva de Lima G, Machado de Almeida RV, Matos Santos Lima JP, de Bittencourt Pasquali MA, Siqueira Dalmolin RJ (2019) Analysis of Arabidopsis thaliana redox gene network indicates evolutionary expansion of class III peroxidase in plants. Sci Rep 9:15741

    Article  CAS  Google Scholar 

  • Baldani VL, de B. Alvarez MA, Baldani JI, Döbereiner J (1986) Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant Soil 90:35–46

    Article  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Ann Biochem 72:48–254

    Article  Google Scholar 

  • Cassan F, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 33:440–459

    Article  CAS  Google Scholar 

  • Cassán F, Coniglio A, López G, Molina R, Nievas S, Noir Le, de Carlan C, Donadio F, Torres D, Rosas S, Olivera Pedrosa F, de Souza E, Díaz Zorita M, de-Bashan L, Mora V (2020) Biol Fertil Soils 56:461–479

    Article  Google Scholar 

  • Chahtane H, Nogueira Fuller T, Allard P-M, Marcourt L, Ferreira Queiroz E, Shanmugabalaji V, Falquet J, Wolfender J-L, Lopez-Molina L (2018) The plant pathogen Pseudomonas aeruginosa triggers a DELLA-dependent seed germination arrest in Arabidopsis. eLife 7:e37082

    Article  PubMed  PubMed Central  Google Scholar 

  • Chavez-Herrera E, Hernandez-Esquivel AA, Castro-Mercado E, Garcia-Pineda E (2018) Effect of Azospirillum brasilense Sp245 lipopolysaccharides on wheat plant development. J Plant Growth Reg 37:859–866

    Article  CAS  Google Scholar 

  • Chester IR, Meadow PM (1975) Heterogeneity of the lipopolysaccharide from Pseudomonas aeruginosa. Eur J Biochem 58:273–282

    Article  CAS  PubMed  Google Scholar 

  • Cosio C, Vuillemin L, De Meyer M, Kevers C, Penel C, Dunand C (2009) An anionic class III peroxidase from zucchini may regulate hypocotyl elongation through its auxin oxidase activity. Planta 229:823–836

    Article  CAS  PubMed  Google Scholar 

  • Córdoba-Pedregosa MC, Córdoba F, Villalba JM, González-Reyes JA (2003) Zonal changes in ascorbate and hydrogen peroxide contents, peroxidase, and ascorbate-related enzyme activities in onion roots. Plant Physiol 131:697–706

    Article  CAS  Google Scholar 

  • Evseeva NV, Matora LYu, Burygin GL, Dmitrienko VV, Shchyogolev SYu (2011) Effect of Azospirillum brasilense Sp245 lipopolysaccharide on the functional activity of wheat root meristematic cells. Plant Soil 346:181–188

    Article  CAS  Google Scholar 

  • Evseeva NV, Tkachenko O, Burygin GL, Matora LYu, Lobachev YV, Shchyogolev SYu (2018) Effect of bacterial lipopolysaccharides on morphogenetic activity in wheat somatic calluses. World J Microbiol Biotechnol 34:3

    Article  CAS  Google Scholar 

  • Farahani AS, Taghavi M (2016) Changes of antioxidant enzymes of mung bean [Vigna radiata (L.) R. Wilczek] in response to host and non-host bacterial pathogens. J Plant Protect Res 56:95–99

    Article  CAS  Google Scholar 

  • Fawal N, Li Q, Savelli B, Brette M, Passaia G, Fabre M, Mathé C, Dunand C (2013) PeroxiBase: a database for large-scale evolutionary analysis of peroxidases. Nucleic Acids Res 41:D441–D444

    Article  CAS  PubMed  Google Scholar 

  • Fedonenko YP, Egorenkova IV, Konnova SA, Ignatov VV (2001) Involvement of the lipopolysaccharides of Azospirilla in the interaction with wheat seedling roots. Microbiology 70:329–334

    Article  CAS  Google Scholar 

  • Fomsgaard A, Freudenberg MA, Galanos C (1990) Modification of the silver staining technique to detect lipopolysaccharide in polyacrylamide gels. J Clin Microbiol 28:2627–2631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francoz E, Ranocha P, Nguyen-Kim H, Jamet E, Burlat V, Dunand C (2015) Roles of cell wall peroxidases in plant development. Phytochemistry 112:15–21

    Article  CAS  PubMed  Google Scholar 

  • García-Pineda E, Benezer-Benezer M, Gutiérrez-Segundo A, Rangel-Sánchez G, Arreola-Cortés A, Castro-Mercado E (2010) Regulation of defence responses in avocado roots infected with Phytophthora cinnamomi (Rands). Plant Soil 331:45–56

    Article  CAS  Google Scholar 

  • Gimenez-Ibanez S, Rathjen JP (2010) The case for the defense: plants versus Pseudomonas syringae. Microbes Infect 12:428–437

    Article  CAS  PubMed  Google Scholar 

  • Jang IC, Park SY, Kim KY, Kwon SY, Kim JG, Kwak SS (2004) Differential expression of 10 sweet potato peroxidase genes in response to bacterial pathogen, Pectobacterium chrysanthemi. Plant Physiol Biochem 42:451–455

    Article  CAS  PubMed  Google Scholar 

  • Kagan JC (2017) Lipopolysaccharide detection across the kingdoms of life. Trends Immunol 38:696–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalsoom U, Bhatti HN, Asgher M (2015) Characterization of plant peroxidases and their potential for degradation of dyes: a review. Appl Biochem Biotechnol 176:1529–1550

    Article  CAS  PubMed  Google Scholar 

  • Klockgether J, Munder A, Neugebauer J, Davenport CF, Stanke F, Larbig KD, Heeb S, Schöck U, Pohl TM, Wiehlmann L, Tümmler B (2010) Genome diversity of Pseudomonas aeruginosa PAO1 laboratory strains. J Bacteriol 192:1113–1121

    Article  CAS  PubMed  Google Scholar 

  • Kutschera A, Ranf S (2019) The multifaceted functions of lipopolysaccharide in plant-bacteria interactions. Biochimie 159:93–98

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Larraburu EE, Yarte ME, Llorente BE (2016) Azospirillum brasilense inoculation, auxin induction and culture medium composition modify the profile of antioxidant enzymes during in vitro rhizogenesis of pink lapacho. Plant Cell Tiss Organ Cult 127:381–392

    Article  CAS  Google Scholar 

  • Lavania M, Chauhan PS, Chauhan SVS, Singh HB, Nautiyal CS (2006) Induction of plant defense enzymes and phenolics by treatment with plant growth–promoting rhizobacteria Serratia marcescens NBRI1213. Curr Microbiol 52:363–368

    Article  CAS  PubMed  Google Scholar 

  • Madala NE, Leone MR, Molinaro A, Dubery IA (2011) Deciphering the structural and biological properties of the lipid A moiety of lipopolysaccharides from Burkholderia cepacia strain ASP B 2D, in Arabidopsis thaliana. Glycobiology 21:184–194

    Article  CAS  PubMed  Google Scholar 

  • Madala NE, Molinaro A, Dubery IA (2012) Distinct carbohydrate and lipid-based molecular patterns within lipopolysaccharides from Burkholderia cepacia contribute to defense-associated differential gene expression in Arabidopsis thaliana. Innate Immun 18:140–154

    Article  CAS  PubMed  Google Scholar 

  • Maranon MJR, Van Huystee RB (1994) Plant peroxidases: interaction between their prosthetic groups. Phytochemistry 37:1217–1225

    Article  CAS  Google Scholar 

  • Mareya CR, Tugizimana F, Di Lorenzo F, Silipo A, Piater LA, Molinaro A, Dubery AA (2020) Adaptive defence-related changes in the metabolome of Sorghum bicolor cells in response to lipopolysaccharides of the pathogen Burkholderia andropogonis. Sci Rep 10:7626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matora L, Solovova G, Serebrennikova O, Selivanov N, Shchyogolev S (1995) Immunological properties of Azospirillum cell surface: the structure of carbohydrate antigens and evaluation of their involvement in bacteria-plant contact interactions. In: Fendrik I, del Gallo M, Vanderleyden J, de Zamaroczy M (eds) Azospirillum VI and related microorganisms. NATO ASI series (series G: ecological sciences), vol 37. Springer, Berlin

    Google Scholar 

  • Minaeva OM, Akimova EE, Tereshchenko NN, Zyubanova TI, Apenysheva MV, Kravets AV (2018) Effect of Pseudomonas bacteria on peroxidase activity in wheat plants when infected with Bipolaris sorokiniana. Russ J Plant Physiol 65:717–725

    Article  CAS  Google Scholar 

  • Molinaro A, Newman MA, Lanzetta R, Parrilli M (2009) The structures of lipopolysaccharides from plant-associated gram-negative bacteria. Eur J Org Chem 34:5887–5896

    Article  CAS  Google Scholar 

  • Pereg L, de-Bashan LE, Bashan Y (2016) Assessment of affinity and specificity of Azospirillumfor plants. Plant Soil 399:389–414

    Article  CAS  Google Scholar 

  • Ranf S (2016) Immune sensing of lipopolysaccharide in plants and nimals: same but different. PLoS Pathog 12(6):e1005596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ranf S, Gisch N, Schaffer M, Illig T, Westphal L, Knirel YA, Sánchez-Carballo PM, Zähringer U, Hückelhoven R, Lee J, Scheel D (2015) A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nat Immunol 16:426–433

    Article  CAS  PubMed  Google Scholar 

  • Ranf S, Scheel D, Lee J (2016) Challenges in the identification of microbe-associated molecular patterns in plant and animal innate immunity: a case study with bacterial lipopolysaccharide. Mol Plant Pathol 17:1165–1169

    Article  PubMed  PubMed Central  Google Scholar 

  • Renard J, Martínez-Almonacid I, Sonntag A, Molina I, Moya-Cuevas J, Bissoli G, Muñoz-Bertomeu J, Faus I, Niñoles R, Shigeto J, Tsutsumi Y, Gadea J, Serrano R, Bueso E (2020) PRX2 and PRX25, peroxidases regulated by COG1, are involved in seed longevity in Arabidopsis. Plant Cell Environ 43:315–326

    Article  CAS  PubMed  Google Scholar 

  • Renukadevi KP, Angayarkanni J, Karunakaran G (2012) Extraction and characterization of lipopolysaccharide from Serratia rubidaea and its cytotoxicity on lung cancer cell line-nci-h69. Acta Tech Corviniensis 2:97–101

    Google Scholar 

  • Schopfer P (2001) Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant J 28:679–688

    Article  CAS  PubMed  Google Scholar 

  • Shiro Y, Kurono M, Morishima I (1986) Presence of endogenous calcium ion and its functional and structural regulation in horseradish peroxidase. J Biol Chem 261:9382–9390

    Article  CAS  PubMed  Google Scholar 

  • Silipo A, Molinaro A (2017) Lipid A structure. In: Knirel YA, Valpano MA (eds) Bacterial lipopolysaccharides. Springer, Cham

    Google Scholar 

  • Sitaraman R (2015) Pseudomonas spp. as models for plant-microbe interactions. Front Plant Sci 6:787

    Article  PubMed  PubMed Central  Google Scholar 

  • Starkey M, Rahme LG (2009) Modeling Pseudomonas aeruginosa pathogenesis in plant hosts. Nat Protoc 4:117–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  CAS  PubMed  Google Scholar 

  • Svalheim O, Robertsen B (1990) Induction of peroxidase in cucumber hypocotyls by wounding and fungal infection. Physiol Plant 78:261–267

    Article  CAS  Google Scholar 

  • Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820

    Article  CAS  PubMed  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction. Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  • Vallejo-Ochoa J, López-Marmolejo M, Hernández-Esquivel AA, Méndez-Gómez M, Nicolasa Suárez-Soria L, Castro-Mercado E, García-Pineda E (2018) Early plant growth and biochemical responses induced by Azospirillum brasilense Sp245 lipopolysaccharides in wheat (Triticum aestivum L.) seedlings are attenuated by procyanidin B2. Protoplasma 255:685–694

    Article  CAS  PubMed  Google Scholar 

  • Walker TS, Bais HP, Deziel E, Schweizer HP, Rahme LG, Fall R, Vivanco JM (2004) Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol 134:320–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitfield C, Trent MS (2014) Biosynthesis and export of bacterial lipopolysaccharides. Annu Rev Biochem 83:99–128

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Su P, Li W, Xiao G, Zhao Y, Ma X, Wang H, Nevo E, Kong L (2019) Genome-wide and evolutionary analysis of the class III peroxidase gene family in wheat and Aegilops tauschii reveals that some members are involved in stress responses. BMC Genom 20:666

    Article  CAS  Google Scholar 

  • Zaidi A, Ahmad E, Khan MS, Saif S, Rizvi A (2015) Role of plant growth promoting rhizobacteria in sustainable production of vegetables: current perspective. Sci Hortic 193:231–239

    Article  Google Scholar 

Download references

Funding

This study was supported by funds from the Coordinación de la Investigación Científica, Universidad Michoacana de San Nicolás de Hidalgo, and with a Grant to AAHE (No. 606506) from CONACYT, México.

Author information

Authors and Affiliations

Authors

Contributions

AAHE conducted the experiments. ECM contributed with technical assistance to experimental setup. AAHE and EGP discussed the results. EGP was the author of project planning and wrote the manuscript.

Corresponding author

Correspondence to Ernesto García-Pineda.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Esquivel, A.A., Castro-Mercado, E. & García-Pineda, E. Comparative Effects of Azospirillum brasilense Sp245 and Pseudomonas aeruginosa PAO1 Lipopolysaccharides on Wheat Seedling Growth and Peroxidase Activity. J Plant Growth Regul 40, 1903–1911 (2021). https://doi.org/10.1007/s00344-020-10241-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-020-10241-x

Keywords

Navigation