Skip to main content
Log in

Genome-Wide Identification and Expression Analysis of the BvSnRK2 Genes Family in Sugar Beet (Beta vulgaris L.) Under Salt Conditions

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The sucrose non-fermenting-1-related protein kinase 2s (SnRK2s) have been shown to play critical roles in the response to environmental stresses in higher plants. Although the SnRK2 genes family has been identified in various plants, little is reported regarding SnRK2s in sugar beet (Beta vulgaris L.), which is one of the most important crops for both food and sugar production. In the current study, the SnRK2s genes are identified in the sugar beet genome by bioinformatics, and their expression patterns under salinity conditions are tested by the qRT-PCR method. Results showed that a total of six BvSnRK2 genes are identified and characterized from the genome of sugar beet and are further classified into three distinct groups (Group 1, 2, and 3). All BvSnRK2s contained a highly conserved N-terminal kinase region and a greatly divergent C-terminal region. Except for BvSnRK2.4, most of the BvSnRK2 genes were disrupted by eight introns with size ranging from 82 to 2164 bp. Moreover, the expression levels of the BvSnRK2s genes were strongly enhanced by salt treatments, which may be an indicator of potential roles in the response to salinity. The present work is the first systematic analysis of the SnRK2 family genes in sugar beet. The results from this study provide a novel insight for the functional exploration and application of the SnRK2s genes for crop improvement, especially in sugar crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Boudsocq M, Barbier-Brygoo H, Lauriere C (2004) Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem 279:41758–41766

    CAS  PubMed  Google Scholar 

  • Choudhary AK, Sultana R, Vales MI, Saxena KU, Kumar RR, Ratnakumar P (2018) Integrated physiological and molecular approaches to improvement of abiotic stress tolerance in two pulse crops of the semi-arid tropics. Crop J 6:99–114

    Google Scholar 

  • Dohm JC, Minoche AE, Holtgräwe D, Salvador CG, Zakrzewski F, Tafer H, Rupp O, Sörensen TR, Stracke R, Reinhardt R, Goesmann A, Kraft T, Schulz B, Stadler FP, Schmidt T, Gabaldón T, Lehrach H, Weisshaar B, Himmelbauer H (2014) The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505:546–552

    CAS  PubMed  Google Scholar 

  • Feng J, Wang L, Wu Y, Luo Q, Zhang Y, Qiu D, Su P, Xiong Z, Chang J, Yang G, He G (2019) TaSnRK2.9, a sucrose no-fermenting 1-related protein kinase gene, positively regulates plant response to drought and salt stress in transgenic tobacco. Front Plant Sci 9:2003

    PubMed  PubMed Central  Google Scholar 

  • Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815

    CAS  PubMed  Google Scholar 

  • Fujii H, Verslues PE, Zhu JJ (2011) Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc Natl Acad Sci USA 108:1217–1222

    Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, New Jersey, pp 571–607

    Google Scholar 

  • Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu JK, Harmon AC (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    PubMed  Google Scholar 

  • Huai J, Wang M, He J, Zheng J, Dong Z, Lv H, Zhao J, Wang G (2008) Cloning and characterization of the SnRK2 gene family from Zea mays. Plant Cell Rep 27:1861–1868

    CAS  PubMed  Google Scholar 

  • Hunter T (1995) Protein kinases and phosphatases: The Yin and Yang of protein phosphorylation and signaling. Cell 80:225–236

    CAS  PubMed  Google Scholar 

  • Hussain MI, Lyra DA, Faroop M, Nikoloudakis N, Khalid N (2016) Salt and drought stresses in safflower: a review. Agron Sustain Dev 36:4

    Google Scholar 

  • Kawa D, Meyer AJ, Dekker HL, Abd-El-Haliem AM, Gevaert K, Van De Slijke E, Maszkowska J, Bucholc M, Dobrowolska G, Jaeger GD, Schuurikn RC, Haring MA, Testerink C (2020) SnRK2 protein kinases and mRAN decapping machinery control root development and response to salt. Plant Physiol 182:361–377

    CAS  PubMed  Google Scholar 

  • Kulik A, Wawer I, Krzywińska E, Bucholc M, Dobrowolska G (2011) SnRK2 protein kinases–key regulators of plant response to abiotic stresses. OMICS 15:859–872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T (2004) Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell 16:1163–1177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JY, Chen NN, Cheng ZM, Xiong JS (2016) Genome-wide identification, annotation and expression profile analysis of SnRK2 gene family in grapevine. Aust J Grape Wine Res 22:478–488

    CAS  Google Scholar 

  • Liu Z, Ge X, Yang Z, Zhang C, Zhao G, Chen E, Liu J, Zhang X, Li F (2017) Genome-wide identification and characterization of SnRK2 gene family in cotton (Gossypium hirsutum). BMC Genet 18:54

    PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • MaoX LY, Rehman SU, Miao L, Zhang YF, Chen X, Yu C, Wang J, Li C, Jing R (2020) The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) genes are multifaceted players in plant growth, development and response to environmental stimuli. Plant Cell Physiol 61:225–242

    Google Scholar 

  • Monteiro F, Frese L, Castro S, Duarte M, Paulo OS, Loureiro J, Romeiras MM (2018) Genetic and genomic tools to assist sugar beet improvement: the value of the crop wild relatives. Front Plant Sci 9:74

    PubMed  PubMed Central  Google Scholar 

  • Ribeiro IC, Pinheiro C, Ribeiro CM, Veloso M, Simões-Costa MC, Evaristo I, Paulo OS, Ricardo CP (2016) Genetic diversity and physiological performance of Portuguese wild beet (Beta vulgaris spp. maritima) from three contrasting habitats. Front Plant Sci 7:1293

    PubMed  PubMed Central  Google Scholar 

  • Rodríguez Del Río Á, Minoche AE, Zwickl NF, Friedrich A, Liedtke S, Schmidt T, Himmelbauer H, Dohm JC (2019) Genomes of the wild beets Beta patula and Beta vulgaris ssp. maritima. Plant J 99:1242–1253

    PubMed  Google Scholar 

  • Shao Y, Qin Y, Zou Y, Ma F (2014) Genome-wide identification and expression profiling of the SnRK2 gene family in Malus prunifolia. Gene 552:87–97

    CAS  PubMed  Google Scholar 

  • Shao Y, Zhang X, van Nocker S, Gong X, Ma F (2019) Overexpression of a protein kinase gene MpSnRK2.10 from Malus prunifolia confers tolerance to drought stress in transgenic Arabidopsis thaliana and apple. Gene 692:26–34

    CAS  PubMed  Google Scholar 

  • Shen X, Guo X, Zhao D, Zhang Q, Jiang Y, Wang W, Peng X, Wei Y, Zhai Z, Zhao W, Li T (2017) Cloning and expression profiling of the PacSnRK2 and PacPP2C gene families during fruit development, ABA treatment, and dehydration stress in sweet cherry. Plant Physiol Biochem 119:275–285

    CAS  PubMed  Google Scholar 

  • Sigrist CJA, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, Bougueleret L, Xenarios I (2013) New and continuing developments at PROSITE. Nucleic Acids Res 41:D344–D347

    CAS  PubMed  Google Scholar 

  • Song X, Ohtani M, Hori C, Takebayasi A, Hiroyama R, Rejab NA, Suzuki T, Demura T, Yin T, Yu X, Zhuge Q (2015) Physical interaction between SnRK2 and PP2C is conserved in Populus trichocarpa. Plant Biotechnol 32:337–341

    CAS  Google Scholar 

  • Song X, Yu X, Hori C, Demura T, Ohtani M, Zhuge Q (2016) Heterologous overexpression of poplar SnRK2genes enhanced salt stress tolerance in Arabidopsis thaliana. Front Plant Sci 7:612

    PubMed  PubMed Central  Google Scholar 

  • Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Molecular basis of the core regulatory network inABA responses: sensing, signaling and transport. Plant Cell Physiol 51:1821–1839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wakeel A, Asif AR, Pitann B, Schubert S (2011) Proteome analysis of sugar beet (Beta vulgaris L.) elucidates constitutive adaptation during the first phase of salt stress. J Plant Physiol 168:519–526

    CAS  PubMed  Google Scholar 

  • Wang L, Hu W, Sun J, Liang X, Yang X, Wei S, Wang X, Zhou Y, Xiao Q, Yang G, He G (2015) Genome-wide analysis of SnRK2 gene family in Brachypodium distachyon and functional characterization of BdSnRK2.9. Plant Sci 237:33–45

    CAS  PubMed  Google Scholar 

  • Wu GQ, Feng RJ, Zhang JJ (2013) Evaluation of salinity tolerance in seedlings of sugar beet (Beta vulgaris L.) cultivars using proline, soluble sugars and cation accumulation criteria. Acta Physiol Plant 35:2665–2674

    CAS  Google Scholar 

  • Wu GQ, Li ZQ, Cao H, Wang JL (2019) Genome-wide identification and expression analysis of the WRKY genes in sugar beet (Beta vulgaris L.) under alkaline stress. PeerJ 7:e7817

    PubMed  PubMed Central  Google Scholar 

  • Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12:7–8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo MJ, Ma T, Zhu N, Liu L, Harmin AC, Wang Q, Chen S (2016) Genome-wide identification and homeolog-specific expression analysis of the SnRK2 genes in Brassica napus guard cells. Plant Mol Biol 91:211–227

    CAS  PubMed  Google Scholar 

  • Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K (2006) The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem 281:5310–5318

    CAS  PubMed  Google Scholar 

  • Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133–139

    CAS  PubMed  Google Scholar 

  • Zhao W, Cheng YH, Zhang C, Shen XJ, You QB, Guo W, Li X, Song XJ, Zhou XA, Jiao YQ (2017) Genome-wide identification and characterization of the GmSnRK2 family in soybean. Int J Mol Sci 18:1834

    PubMed Central  Google Scholar 

  • Zhang HY, Li WY, Mao XG, Jing RL, Jia HF (2016) Differential activation of the wheat SnRK2 family by abiotic stresses. Front Plant Sci 7:420

    PubMed  PubMed Central  Google Scholar 

  • Zhang YH, Wan SQ, Wang WD, Chen JF, Huang LL, Duan MS, Yu YB (2018) Genome-wide identification and characterization of the CsSnRK2 family in Camellia sinensis. Plant Physiol Biochem 132:287–296

    CAS  PubMed  Google Scholar 

  • Zhang Y, Wan S, Liu X, He J, Cheng L, Duan M, Liu H, Wang W, Yu Y (2020) Overexpression of CsSnRK2.5 increases tolerance to drought stress in transgenic Arabidopsis. Plant Physiol Biochem 150:162–170

    CAS  PubMed  Google Scholar 

  • Zhong R, Wang Y, Gai R, Xi D, Mao C, Ming F (2020) Rice SnRK protein kinase OsSAPK8 acts as a positive regulator in abiotic stress responses. Plant Sci 292:110373

    CAS  PubMed  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and response in plants. Cell 167:313–324

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is funded by the National Natural Science Foundation of China (NSFC No. 31860404) and the Natural Science Foundation of Gansu Province (18JR3RA152).

Author information

Authors and Affiliations

Authors

Contributions

G-QW designed the research and wrote the article. Z-XL, L-LX, and J-LW conducted the research and analyzed the data. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Guo-Qiang Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (JPG 2266 kb) Supplementary Fig. S1 Details of secondary structure of BvSnRK2s.

Supplementary file 2 (JPG 2260 kb) Supplementary Fig. S2 String analysis for individual BvSnRK2.

344_2020_10119_MOESM3_ESM.xls

Supplementary file 3 (XLS 83 kb) Supplementary Data S1 Genomic sequences, coding sequences, and protein sequences of BvSnRK2s.

344_2020_10119_MOESM4_ESM.xls

Supplementary file 4 (XLS 75 kb) Supplementary Table S1 Accession numbers and protein sequences of SnRK2s from different plant species.

344_2020_10119_MOESM5_ESM.xls

Supplementary file 5 (XLS 34 kb) Supplementary Table S2 Detailed information of protein-protein interaction of BvSnRK2s.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, GQ., Liu, ZX., Xie, LL. et al. Genome-Wide Identification and Expression Analysis of the BvSnRK2 Genes Family in Sugar Beet (Beta vulgaris L.) Under Salt Conditions. J Plant Growth Regul 40, 519–532 (2021). https://doi.org/10.1007/s00344-020-10119-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-020-10119-y

Keywords

Navigation