Skip to main content
Log in

The Expression of CpAUX1/LAXs and Most of the Long-distance CpPINs Genes Increases as the Somatic Embryogenesis Process Develops in C. papaya cv. “Red Maradol”

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

In plants, auxin is distributed directly from cell to cell through polar auxin transport (PAT) by the action of auxin influx (AUX1/LAXs) and efflux (PINs) transporters proteins. In Arabidopsis thaliana, PAT plays an important role in the formation of apical and radicular meristems during somatic embryogenesis (SE). The goal of the present research was to define if in Carica papaya, the expression of the whole family of auxin transporter genes changes as somatic embryos develop. The family of AUX1/LAXs genes in C. papaya had at least one member in every clade of the phylogenetic tree. However, in terms of PINs genes, C. papaya had one member in all subclades within “long-distance” (LD) clade I, but for “short-distance” (SD) clade II, it had a member in all subclades except in subclade V. In terms of expression, our results showed that the auxin influx transporter (AIT) genes (CpLAX 1, 2, 3) appeared to be more related to the development of somatic embryos at the torpedo and cotyledonary stages. In contrast, the LD auxin efflux transporter (AET) (CpPIN 1, 3, 4) genes appeared to be related to the development of SE at their different stages, as they were expressed throughout all SE stages (from globular to cotyledonary). Moreover, when the mature somatic embryo regenerated into plants, the expression of CpAUX1, CpLAX1, CpLAX2, CpLAX3, CpPIN1, CpPIN3, and CpPIN4 transporters genes increased further, although different patterns of expression were found in leaves and roots from those regenerated plantlets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bainbridge K, Guyomarc’h S, Bayer E, Swarup R, Bennett M, Mandel T, Kuhlemeier C (2008) Auxin influx carriers stabilize phyllotactic patterning. Genes Dev 22:810–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balzan S, Johal GS, Carraro N (2014) The role of auxin transporters in monocots development. Front Plant Sci 5:1–12

    Article  Google Scholar 

  • Banerjee J (2002) Tissue culture and transformation studies in Indian cultivars of papaya (Carica papaya L.) Ph D thesis, Plant tissue culture division national chemical laboratory, Pune, India pp 26–27

  • Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    Article  PubMed  Google Scholar 

  • Berleth T, Chatfield S (2002) Embryogenesis: pattern formation from a single cell. In: Somerville CR, Meyerowitz EM (eds) The arabidopsis book. American Society of Plant Biologists, Rockville

    Google Scholar 

  • Berlin GP, Miksche JP (1976) Botanical microtechnique and cytochemistry, 3rd edn. Iowa State University Press, Ames

    Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Mitsuhiro A, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44

    Article  CAS  PubMed  Google Scholar 

  • Bukhori M, Song CH, Khalid N, Pillai V, Rahman AN (2013) Improved protocol for high frequency plant regeneration through somatic embryogenesis in Carica papaya. Res Biotechnol 4:9–19

    Google Scholar 

  • Dal Bosco C, Dovzhenko A, Palme K (2012) Intracellular auxin transport in pollen. Plant Signal Behav 7:1504–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dharmasiri S, Swarup R, Mockaitis K, Dharmasiri N, Singh SK, Kowalchyk M, Marchant A, Mills S, Sandberg G, Bennett MJ, Estelle M (2006) AXR4 Is required for localization of the auxin influx facilitator AUX1. Science 312:1218–1220

    Article  CAS  PubMed  Google Scholar 

  • Dhekney SA, Kandel R, Bergey DR, Sitther V, Soorianathasundaram K, Litz RE (2016) Advances in papaya biotechnology. Biocatal Agric Biotechnol 5:133–142

    Google Scholar 

  • Ding Z, Wang B, Moreno I, Dupláková N, Simon S, Carraro N, Reemmer J, Pěnčík A, Chen X, Tejos R, Skůpa P, Pollmann S, Mravec J, Petrášek J, Zažímalová E, Honys D, Rolčík J, Murphy A, Orellana A, Geisler M, Friml J (2012) ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nat Commun 3:941–947

    Article  PubMed  Google Scholar 

  • Estrella-Maldonado H, Fuentes OG, Chan LA, Rodríguez ZL, Talavera MC, Espadas GF, Barredo PF, Idrovo EF, Santamaría FJ (2016) The papaya CpAUX1/LAX and CpPIN genes: structure, phylogeny and expression analysis related to root formation on in vitro plantlets. Plant Cell Tiss Organ Cult 126:187–204

    Article  CAS  Google Scholar 

  • Fith MMM, Manshardt RM (1990) Somatic embryogenesis and plant regeneration from immature zygotic embryos of papaya (Carica papaya L.). Plant Cell Rep 9:320–324

    Google Scholar 

  • Forestan C, Farinati S, Varotto S (2012) The maize PIN gene family of auxin transporters. Front Plant Sci 3:1–16

    Article  Google Scholar 

  • Friml J, Benková E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jürgens G, Palme K (2002) AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108:661–673

    Article  CAS  PubMed  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153

    Article  CAS  PubMed  Google Scholar 

  • Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230

    Article  PubMed  Google Scholar 

  • Ganguly A, Lee SH, Cho M, Lee OR, Yoo H, Cho HT (2010) Differential auxin-transporting activities of PIN-FORMED proteins in Arabidopsis root hair cells. Plant Physiol 153:1046–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon SP, Heisler MG, Reddy GV, Ohno C, Das P, Meyerowitz EM (2007) Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134:3539–3548

    Article  CAS  PubMed  Google Scholar 

  • Grebe M, Friml J, Swarup R, Ljung K, Sandberg G, Terlou M, Palme K, Bennett MJ, Scheres B (2002) Cell polarity signaling in Arabidopsis involves a BFA-sensitive auxin influx pathway. Curr Biol 12:329–334

    Article  CAS  PubMed  Google Scholar 

  • Hakman I, Hallberg H, Palovaara J (2009) The effect of the polar auxin transport inhibitor NPA on embryo morphology and expression of an auxin efflux facilitator protein PIN during Picea abies somatic embryo development. Tree Physiol 29:483–496

    Article  CAS  PubMed  Google Scholar 

  • Jenik PD, Gillmor CS, Lukowitz W (2007) Embryonic patterning in Arabidopsis thaliana. Annu Rev Cell Dev Biol 23:207–236

    Article  CAS  PubMed  Google Scholar 

  • Jiménez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110

    Article  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    CAS  PubMed  Google Scholar 

  • Jones AR, Kramer EM, Knox K, Swarup R, Bennett MJ, Lazarus CM, Leyser OHM, Grierson CS (2009) Auxin transport through non-hair cells sustains root-hair development. Nat Cell Biol 11:78–84

    Article  CAS  PubMed  Google Scholar 

  • Křeček P, Skůpa P, Libus J, Naramoto S, Tejos R, Friml J, Zažímalová E (2009) The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol 10:1–11

    Article  Google Scholar 

  • Liu C, Xu Z, Chua N (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5:621–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Zhang J, Wang L, Li J, Zheng H, Chen J, Lu M (2014) A survey of populus PIN-FORMED family genes reveals their diversified expression patterns. J Exp Bot 65:2437–2448

    Article  CAS  PubMed  Google Scholar 

  • Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, Sandberg G (2005) Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell 17:1090–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchant A, Bhalerao R, Casimiro I, Eklöf J, Casero PJ, Bennett M, Sandberg G (2002) AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell 14:589–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McManus JFA (1961) Periodate oxidation techniques: general cytochemical methods. Academic Press, New York, pp 171–201

    Book  Google Scholar 

  • Mravec J, Skůpa P, Bailly A, Hoyerová K, Křeček P, Bielach A, Petrášek J, Zhang J, Gaykova V, Stierhof YD, Dobrev PI, Schwarzerová K, Rolčík J, Seifertová D, Luschnig C, Benková E, Zažímalová E, Geisler M, Friml J (2009) Subcellular homeostasis of phytohormone auxin is mediated by the ER localized PIN5 transporter. Nature 459:1136–1140

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nawy T, Lukowitz W, Bayer M (2008) Talk global, act local-patterning the Arabidopsis embryo. Curr Opin Plant Biol 11:28–33

    Article  CAS  PubMed  Google Scholar 

  • Paponov IA, Teale WD, Trebar M, Blilou I, Palme K (2005) The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci 10:170–177

    Article  CAS  PubMed  Google Scholar 

  • Parry G, Marchant A, May S, Swarup R, Swarup K, James N, Graham N, Allen T, Martucci T, Yemm A, Napier R, Manning K, King G, Bennett M (2001) Quick on the uptake: characterization of a family of plant auxin influx carriers. J Plant Growth Regul 20:217–225

    Article  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101:9903–9908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Péret B, Middleton AM, French AP, Larrieu A, Bishopp A, Njo M, Wells DM, Porco S, Mellor N, Band LR, Casimiro I, Kleine-Vehn J, Vanneste S, Sairanen I, Mallet R, Sandberg G, Ljung K, Beeckman T, Benkova E, Friml J, Kramer E, King JR, De Smet I, Pridmore T, Owen M, Bennett MJ (2013) Sequential induction of auxin efflux and influx carriers regulates lateral root emergence. Mol Syst Biol 9:699

    Article  PubMed  PubMed Central  Google Scholar 

  • Perrine-Walker FM, Jublanc E (2014) The localization of auxin transporters PIN3 and LAX3 during lateral root development in Arabidopsis thaliana. Biol Plant 58:778–782

    Article  CAS  Google Scholar 

  • Petersson SV, Johansson AI, Kowalczyk M, Makoveychuk A, Wang JY, Moritz T, Grebe M, Benfey PN, Sandberg G, Ljung K (2009) An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 21:1659–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrásek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688

    Article  PubMed  Google Scholar 

  • Posada-Pérez L, Gómez KR, Reyes M (2007) Embriogénesis somática en Carica papaya L. var. Maradol rojo. Biotecnología Vegetal 7:131–138

    Google Scholar 

  • Razali RM, Drew R (2014) A refined protocol for embryogenesis to transfer PRSV-P resistance genes from Vasconcella pubescens to Carica papaya. Acta Hortic 1022:47–53

    Article  Google Scholar 

  • Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260

    Article  CAS  PubMed  Google Scholar 

  • Revalska M, Vassileva V, Zechirov G, Iantcheva A (2015) Is the auxin influx carrier LAX3 essential for plant growth and development in the model plants Medicago truncatula, Lotus japonicus and Arabidopsis thaliana? Biotechnol Biotechnol Equip 29:786–797

    Article  CAS  Google Scholar 

  • Robert HS, Grones P, Stepanova AN, Robles LM, Lokerse AS, Alonso JM, Weijers D, Friml J (2013) Local auxin sources orient the apical-basal axis in Arabidopsis embryos. Curr Biol 23:2506–2512

    Article  CAS  PubMed  Google Scholar 

  • Robert HS, Grunewald W, Sauer M, Cannoot B, Soriano M, Swarup R, Weijers D, Bennett M, Boutilier K, Friml J (2015) Plant embryogenesis requires AUX/LAX-mediated auxin influx. Development 142:702–711

    Article  CAS  PubMed  Google Scholar 

  • Sawchuk MG, Edgar A, Scarpella E (2013) Patterning of leaf vein networks by convergent auxin transport pathways. PLoS Genet 9:e1003294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scarpella E, Marcos D, Friml J, Berleth T (2006) Control of leaf vascular patterning by polar auxin transport. Genes Dev 20:1015–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekeli R, Abdullah JO, Namasivayam P, Muda P, Abu Bakar UM (2013) Better rooting procedure to enhance survival rate of field grown Malaysian Eksotika papaya transformed with 1-Aminocyclopropane-1-carboxylic acid oxidase gene. ISRN Biotechnol 13:1–10

    Article  Google Scholar 

  • Shen C, Bai YH, Wang S, Zhang S, Wu YR, Chen M, Jiang DA, Qi YH (2010) Expression profile of PIN, AUX/LAX and PGP auxin transporters gene families in Sorghum bicolor under phytohormone and abiotic stress. FEBS J 277:2954–2969

    Article  CAS  PubMed  Google Scholar 

  • Steinmann T, Geldner N, Grebe M, Mangold S, Jackon CL, Paris S, Galweiler L, Palme K, Jürgens G (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 289:316–318

    Article  Google Scholar 

  • Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001) Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev 15:2648–2653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swarup R, Kramer EM, Perry P, Knox K, Ottoline LH, Haseloff J, Beemster G, Bhalerao R, Bennett MJ (2005) Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat Cell Biol 7:1057–1065

    Article  CAS  PubMed  Google Scholar 

  • Swarup K, Benková E, Swarup R, Casimiro I, Péret B, Yang Y, Parry G, Nielsen E, De Smet I, Vanneste S, Levesque MP, Carrier D, James N, Calvo V, Ljung K, Kramer E, Roberts R, Graham N, Marillonnet S, Patel K, Jones JD, Taylor CG, Schachtman DP, May S, Sandberg G, Benfey P, Friml J, Kerr I, Beeckman T, Laplaze L, Bennett MJ (2008) The auxin influx carrier LAX3 promotes lateral root emergence. Nat Cell Biol 10:946–954

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tvorogova VE, Lebedeva MA, Lutova LA (2015) Expression of WOX and PIN genes during somatic and zygotic embryogenesis in Medicago truncatula. Russ J Genetics 51:1189–1198

    Article  CAS  Google Scholar 

  • Ugartechea-Chirino Y, Swarup R, Swarup K, Péret B, Whitworth M, Bennett MJ, Bougourd S (2009) The AUX1 LAX family of auxin influx carriers is required for the establishment of embryonic root cell organization in Arabidopsis thaliana. Ann Bot 105:277–289

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandenbussche F, Petrášek J, Žádníková P, Hoyorevá K, Pešek B, Raz V, Swarup R, Bennett M, Zažímalová E, Benková E, Van Der Straeten D (2010) The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Development 137:597–606

    Article  CAS  PubMed  Google Scholar 

  • Wabnik K, Robert HS, Smith RS, Friml J (2013) Modeling framework for the establishment of the apical-basal embryonic axis in plants. Curr Biol 23:2513–2518

    Article  CAS  PubMed  Google Scholar 

  • Weijers D, Schlereth A, Ehrismann JS, Schwank G, Kientz M, Jürgens G (2006) Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. Dev Cell 10:265–270

    Article  CAS  PubMed  Google Scholar 

  • Wiśniewska J, Xu J, Seifertová D, Brewer PB, Růžička K, Blilou I, Rouquié D, Benková E, Scheres B, Friml J (2006) Polar PIN localization directs auxin flow in plants. Science 312:883

    Article  PubMed  Google Scholar 

  • Xu W, Jia L, Baluska F, Ding G, Shi W, Ye N, Zhang J (2012) PIN2 is required for the adaptation of Arabidopsis roots to alkaline stress by modulating proton secretion. J Exp Bot 63:6105–6114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XY, Zhang XL (2010) Regulation of somatic embryogenesis in higher plants. Crit Rev Plant Sci 29:36–57

    Article  CAS  Google Scholar 

  • Yue R, Tie S, Sun T, Zhang L, Yang Y, Qi J, Yan S, Han X, Wang H, Shen C (2015) Genome-wide identification and expression profiling analysis of ZmPIN, ZmPILS, ZmLAX and ZmABCB auxin transporter gene families in maize (Zea mays L.) under various abiotic stresses. PLoS ONE 10:1–23

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Consejo Nacional de Ciencia y Tecnología (CONACYT, México) Project No. 221208. E-M.H. acknowledges a scholarship (254647) Granted by CONACYT. The Government of Mexico, through the Ministry of Foreign Affairs for the scholarship Granted to P-P.L. to undertake a research stay at the Biotechnology Unit of CICY.

Author information

Authors and Affiliations

Authors

Contributions

E-MH, First author, Ph.D. student, performed the gene expression studies and the bioinformatics analysis; P-PL, Contributed on the writing of the paper, performed the induction and regeneration of SE, performed the anatomical and ultra-structural studies, and contributed on the RT-PCR preliminary studies; TMC, Assisted in the tissue culture work, including the experimental set up for SE induction; BPF, Responsible of the anatomical and ultra-structural studies; GKR, Supervision on the protocol of SE; JMS, Corresponding author, general conception of the project, and responsible for the writing of the paper.

Corresponding author

Correspondence to Jorge M. Santamaría.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. All the authors read and approved the manuscript in its final form. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estrella-Maldonado, H., Posada-Pérez, L., Talavera, M.C. et al. The Expression of CpAUX1/LAXs and Most of the Long-distance CpPINs Genes Increases as the Somatic Embryogenesis Process Develops in C. papaya cv. “Red Maradol”. J Plant Growth Regul 37, 502–516 (2018). https://doi.org/10.1007/s00344-017-9746-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-017-9746-y

Keywords

Navigation