Skip to main content
Log in

ABA Biosynthesis Genes are Down-regulated While Auxin and Cytokinin Biosynthesis Genes are Up-regulated During the Release of Grapevine Buds From Endodormancy

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Auxin–cytokinin (CK) interactions have been extensively studied in the control of bud outgrowth in herbaceous plants. However, in temperate woody plants where the meristem of dormant buds can be repressed by either exogenous or endogenous factors, abscisic acid (ABA) has been suggested as a potential regulator of bud outgrowth. To investigate the involvement of ABA, CK, and auxin on bud sprouting in Vitis vinifera, single-bud cuttings were used under forced conditions. This artificial bud sprouting system mimics and hastens the natural sprouting process that occurs in spring. Our results showed that expression of the ABA biosynthesis gene VvNCED1 decreased during incubation, whereas expression of the ABA catabolism gene VvA8H3 remained unaltered. Expression of CK biosynthesis-related genes ISOPENTENYL TRANSFERASE (VvIPTs) and LONELY GUY (VvLOG1), CK catabolism-related gene CYTOKININ OXIDASE (VvCKX3), and key auxin biosynthesis gene VvYUC3 increased with incubation time. Moreover, treatment with hydrogen cyanamide (HC), a compound that breaks vine latency, increased expression of VvIPTs and VvLOG1 and reduced expression of VvCKX3 and VvNCED1. These results are consistent with previous reports indicating that HC increases CK levels and decreases ABA levels in grapevine buds. Taken together, the results suggest that in the vine, bud sprouting is preceded by a decrease in ABA content and an increase in CK and auxin levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Azizi P, Rafi MY, Maziah M, Abdullah SNA, Hanafi MM, Latif MA, Rashid AA, Sahebi M (2015) Understanding the shoot apical meristem regulation: A study of the phytohormones, auxin and cytokinin, in rice. Mech Dev 135:1–15

    Article  CAS  PubMed  Google Scholar 

  • Bennet T, Sieberer T, Willet B, Booker J, Lusching C, Leyser O (2006) The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr Biol 16:553–563

    Article  Google Scholar 

  • Brewer PB, Dun EA, Gui, R, Mason MG, Beveridge C (2015) Strigolactone inhibition of branching independent of polar auxin transport. Plant Physiol 168:1820–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown BT, Foster C, Phillips JN, Rattigan BM (1979) The indirect role of 2,4-D in the maintenance of apical dominance in decapitated sunflower seedlings (Helianthus annuus L.). Planta 146:475–480

    Article  CAS  PubMed  Google Scholar 

  • Brugière N, Shuping J, Hantke S, Zinselmeier C, Roessler JA, Niu X, Jones RJ, Habben JE (2003) Cytokinin oxidase gene expression in maize is localized to the vasculature, and is induced by cytokinins, absicisic acid and abiotic stress. Plant Physiol 132:1228–1240

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Crabbe JJ (1984) Correlative effects modifying the course of bud dormancy in woody plants. Z Planzenphysiol 113: 465–469

    Article  Google Scholar 

  • Crawford S, Shinohara N, Siberee T (2010) Strigolactone enhance competition between shoot branches by dampening auxin transport. Development 137: 2905–2913

    Article  CAS  PubMed  Google Scholar 

  • Dennis FG (2003) Problems in standardizing methods for evaluating the chilling requirements for the breaking of dormancy in buds of woody plants. HortScience 38:347–350

    Google Scholar 

  • Dun EA, de Saint Germain A, Rameau C, Beveridge C (2012) Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiol 158:487–498

    Article  CAS  PubMed  Google Scholar 

  • Fennel A, Hoover E (1991) Photoperiod influences growth, bud dormancy and cold acclimation of Vitis labruscana and V. riparia. J Am Soc Hort Sci 116:270–273

    Google Scholar 

  • Foo E, Bullier E, Goussot M, Foucher M, Rameau C, Beveridge C (2005) The Branching gene RAMOUSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell 17:464–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gegas VC, Doonan JH (2006) Expression of cell cycle genes in shoot apical meristem. Plant Mol Biol 60: 947–961

    Article  CAS  PubMed  Google Scholar 

  • Gocal GFW, Pharis RP, Yeung EC, Pearce D (1991) Changes after decapitation in concentration of indole-3-acetic acid and abscisic acid in the larger axillary bud of Phaseolus vulgaris L. cv tender green. Plant Physiol 95:344–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danous S, Portrais JC, Bowmeester H, Bécaud G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  CAS  PubMed  Google Scholar 

  • Grant TNL, Gargrave J, Dami IE. 2013. Morphological, Physiological, and Biochemical changes in Vitis genotypes in response to photoperiod regimes. Am J Enol Vitic 64: 466–475

    Article  Google Scholar 

  • Hall SM, Hillman JR (1975) Correlative inhibition of lateral bud growth in Phaseolus vulgaris L. Timing of bud growth following decapitation. Planta 123:137–143

    Article  CAS  PubMed  Google Scholar 

  • He D, Mathiason K, Fennell (2012) Auxin cytokinin related gene expression during active shoot growth and latent bud paradormancy in Vitis riparia grapevine. J Plant Physiol 169: 643–648

    Article  CAS  PubMed  Google Scholar 

  • Herber G, Kieber JJ (2002) Cytokinin new insights into a classical phytohormone. Plant Physiol 128:354–362

    Article  Google Scholar 

  • Hyward A, Stirnberg P, Beveridge C, Leyser O (2009) Interactions between auxin and strigolactone in shoot branching control. Plant Physiol 151:400–412

    Article  Google Scholar 

  • Koussa T, Broquedis M, Bouard J.1994. Changes of abscisic acid level during the development of grape latent buds, particularly in the phase of dormancy break. Vitis 33:63–67

    CAS  Google Scholar 

  • Kühn N, Ormeño-Nuñez J, Jaque-Zamora G, Pérez FJ (2009) Photoperiod modifies the diurnal expression profile of VvPHYA and VvPHYB transcripts in field-grown grapevine leaves. J Plant Physiol 166:1172–1180

    Article  PubMed  Google Scholar 

  • Kurakawa T, Ueda N, MaeKawa M, Kobayashi K, Kojima M, Nagato Y (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445:555–562

    Article  Google Scholar 

  • Lang GA, Early JD, Martin GC, Darnell RL (1987) Endo-para and ecodormancy: physiological terminology and classification for dormancy research. HortScience 22:381–387

    Google Scholar 

  • Lefebvre V, North H, Frey A, Sotta B, Seo M, Okamoto M, Nambara E, Marion Polla A (2006) Functional analysis of Arabidopsis NCED genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. Plant J 45:309–319

    Article  CAS  PubMed  Google Scholar 

  • Li CJ, Guevera E, Herrera J, Bengerth F (1995) Effect of apex excision and replacement by 1-naphthylacetic acid on cytokinin concentration and apical dominance in pea plants. Physiol Plant 94:465–469

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the ∆∆CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lombard PJ, Cook NC, Bellstedt DU (2006) Endogenous cytokinin levels of table grape vine during spring budburst as influenced by hydrogen cyanamide application and pruning. Sci Hortic 109:92–96

    Article  CAS  Google Scholar 

  • Mano Y, Nemoto K (2012) The pathway of auxin biosynthesis in plants. J Exp Bot 63:3853–3872

    Article  Google Scholar 

  • McIntyre GI, Damson EL (1988) Apical dominance in Phaseolus vulgaris. The triggering effect of shoot decapitation and leaf excision on growth of the lateral buds. Physiol Plant 74:607–614

    Article  Google Scholar 

  • Müller D, Leyser O (2011) Auxin, cytokinin and the control of shoot branching. Ann Bot 107:1203–1212

    Article  PubMed  PubMed Central  Google Scholar 

  • Noriega X, Burgos B, Pérez FJ (2007) Short-day photoperiod triggers and low temperature increase expression of peroxidase RNA transcripts and basic peroxidase isoenzyme activity in grape-buds. Phytochemistry 68: 1376–1383

    Article  CAS  PubMed  Google Scholar 

  • Parada F, Noriega X, Dantas D, Bressan-Smith R, Pérez FJ (2016) Differences in respiration between dormant and non-dormant buds suggest the involvement of ABA in the development of endodormancy in grapevines. J Plant Physiol 201:71–78

    Article  CAS  PubMed  Google Scholar 

  • Rohde A, Bhalereao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12:217–223

    Article  CAS  PubMed  Google Scholar 

  • Roman H, Girault T, Barbier F, Péron T, Brouard N, Pencick A, Novák O, Vian A, Sakr S, Lothier J, Le Gourrierec, Leduc N (2016) Cytokinin are initial targets of light in the control of bud outgrowth. Plant Physiol 172:489–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the www for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  • Sachs T (1981) The control of patterned differentiation of vascular tissues. Adv Bot Res 9:151–262

    Article  Google Scholar 

  • Shimizu-Sato S, Mori H (2001) Control of outgrowth and dormancy in axillary buds. Plant Physiol 127:1405–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu-Sato S, Tanaka M, Mori H (2009) Auxin-cytokinin interactions in the control of shoot branching. Plant Mol Biol 69:429–435

    Article  CAS  PubMed  Google Scholar 

  • Sreekantan L, Mathiason L, Grimplet J, Schlauch K, Dickerson JA, Fennell A (2010) Differential floral developmentand gene expression in grapevines during long and short photoperiods suggest a role for floral genes in dormancy transitioning. Plant Mol Biol 73:191–205

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan C, Mullins MG (1978) Control of flowering in the grapevine (Vitis vinifera L). Plant Physiol 61:127–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan C, Mullins MG (1980) Flowering in Vitis: effects of genotype on cytokinin-induced conversion of tendrils into inflorescence. Vitis 19:293–300

    Google Scholar 

  • Thimann KV, Skoog F (1934) On the inhibition of bud development and other functions of growth substances in Vicia faba. Proc R Soc Lond B Biol Sci 114:317–339

    Article  CAS  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magone H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  CAS  PubMed  Google Scholar 

  • Vergara R, Pérez FJ (2010) Similarities between natural and chemically induced bud endodormancy release in grapevine Vitis vinifera L. Sci Hortic 125:648–653

    Article  CAS  Google Scholar 

  • Wake CMF, Fennell A (2000) Morphological, physiological and dormancy responses of three Vitis genotype to short photoperiod. Physiol Plant 109:203–210

    Article  CAS  Google Scholar 

  • Yoshida S, Mandel T, Kuhlemeier C (2011) Stem cell activation by light guides plant organogenesis. Genes Dev 25:1439–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young PR, Lashbrooke JG, Alexandersson E, Jacobson D, Moser C, Velasco R, Vivier MA (2012) The gene and enzymes of the carotenoid metabolic pathway in Vitis vinifera L. BMC Genom 13:243–259

    Article  CAS  Google Scholar 

  • Zheng C, Halaly T, Acheampong AK, Takebayashi Y, Jikumaru Y, Kamiya Y, Or E (2015) Absicisic acid (ABA) regulates grape bud dormancy, and dormancy release stimuli may act trough modification of ABA metabolism. J Exp Bot 66:1527–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L (2006) The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation in the outgrowth of axillary buds. Plant J 48:667–698

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of FONDECYT project 1140318 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Pérez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noriega, X., Pérez, F.J. ABA Biosynthesis Genes are Down-regulated While Auxin and Cytokinin Biosynthesis Genes are Up-regulated During the Release of Grapevine Buds From Endodormancy. J Plant Growth Regul 36, 814–823 (2017). https://doi.org/10.1007/s00344-017-9685-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-017-9685-7

Keywords

Navigation