Skip to main content
Log in

The Influence of Phosphorus on Arsenic Uptake/Efflux and As Toxicity to Wheat Roots in Comparison with Sulfur and Silicon

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Hydroponic cultures were conducted to investigate the effects of phosphorus (P), sulfur (S), and silicon (Si) on arsenic (As) accumulation and toxicity to wheat seedlings. The results showed that As concentrations in roots and shoots of wheat seedlings and arsenite [As(III)] in the nutrient solution were significantly decreased with increasing P concentrations. Si had no significant effect on As accumulation in wheat seedlings until the Si concentration was increased to 960 µmol L−1. In the treatment with 960 µmol L−1 Si, both arsenate [As(V)] uptake and As(III) efflux were significantly decreased compared to the treatment without Si. The application of 480 and 960 µmol L−1 S resulted in a significant decrease in As concentrations in wheat shoots, but an increase in As accumulation in wheat roots. Both total As(III) efflux and the relative As(III) efflux were significantly decreased when the S concentration was 960 µmol L−1. Different concentrations of P significantly increased the relative root elongation (RRE), total root length (TRL), root surface area (RSA), root volume (RV), and number of root tips (NRT), and decreased root average diameters (RAD). There were no significant effects of S on RRE, TRL, RSA, RV, RAD, and NRT of wheat seedlings under 15 µmol L−1 As(V). Silicon with concentration of 960 µmol L−1 significantly increased TRL and TRS of wheat seedlings when compared with the treatment without Si under 15 µmol L−1 As(V).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abedin MJ, Feldmann J, Meharg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128:1120–1128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Batista BL, Nigar M, Mestrot A, Rocha AB, Júnior FB, Price AH, Raab A, Feldmann J (2014) Identification and quantification of phytochelatins in roots of rice to long-term exposure: evidence of individual role on arsenic accumulation and translocation. J Exp Bot 65:1467–1479

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee H, Rosen BP (2007) Arsenic metabolism in prokaryotic and eukaryotic microbes. In: Nies DH, Silver S (eds) Molecular microbiology of heavy metals. Springer-Verlag, Berlin, pp 371–406

    Chapter  Google Scholar 

  • Bienert GP, Thorsen M, Schüssler MD, Nilsson HR, Wagner A, Tamás MJ, Jahn TP (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 6:26

    Article  PubMed Central  PubMed  Google Scholar 

  • Dhankher OP, Rosen BP, McKinney EC, Meagher RB (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc Natl Acad Sci USA 103:5413–5418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duan G, Hu Y, Liu W, Kneer R, Zhao F, Zhu Y (2011) Evidence for a role of phytochelatins in regulating arsenic accumulation in rice grain. Environ Exp Bot 71:416–421

    CAS  Google Scholar 

  • Duan G, Kamiya T, Ishikawa S, Arao T, Fujiwara T (2012) Expressing ScACR3 in rice enhanced arsenite efflux and reduced arsenic accumulation in rice grains. Plant Cell Physiol 53:154–163

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Zhu Y, Li M, Zhang L, Cao Z, Smith EA (2007) Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings. Environ Pollut 147:387–393

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Ilgen G, Fecher P (2010) Quantitative chemical extraction for arsenic speciation in rice grains. J Anal At Spectrom 25:800–802

    Article  CAS  Google Scholar 

  • Isayenkov SV, Maathuis FJM (2008) The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake. FEBS Lett 582:1625–1628

    Article  CAS  PubMed  Google Scholar 

  • Kundu R, Bhattacharyya K, Majumder A, Pal S (2013) Response of wheat cultivars to arsenic contamination in polluted soils of West Bengal, India. Cereal Res Commun 41:66–77

    Article  CAS  Google Scholar 

  • Lambrechts T, Lequeue G, Lobet G, Godin B, Bielders CL, Lutts S (2014) Comparative analysis of Cd and Zn impacts on root distribution and morphology of Lolium perenne and Trifolium repens: implications for phytostabilization. Plant Soil 376:229–244

    Article  CAS  Google Scholar 

  • Lee DA, Chen A, Schroeder JI (2003) ars1, an Arabidopsis mutant exhibiting increased tolerance to arsenate and increased phosphate uptake. Plant J 35:637–646

    Article  CAS  PubMed  Google Scholar 

  • Li RY, Stroud JL, Ma JF, McGrath SP, Zhao FJ (2009) Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ Sci Technol 43:3778–3783

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Luo C, Gao Y, Li F, Lin L, Wu C, Li X (2010a) Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China. Environ Pollut 158:820–826

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Wood BA, Raab A, McGrath SP, Zhao F, Feldmann J (2010b) Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis. Plant Physiol 152:2211–2221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu X, Su Y, McGrath SP, Zhao F (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci USA 105:9931–9935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  • Na GN, Salt DE (2011) The role of sulfur assimilation and sulfur-containing compounds in trace element homeostasis in plants. Environ Exp Bot 72:18–25

    Article  CAS  Google Scholar 

  • Přibyl P, Cepák V, Zachleder V (2005) Cytoskeletal alterations in interphase cells of the green alga Spirogyra decimina in response to heavy metals exposure: I. The effect of cadmium. Protoplasma 226:231–240

    Article  PubMed  Google Scholar 

  • Seyfferth A, Fendorf S (2012) Silicate mineral impacts on the uptake and storage of arsenic and plant nutrients in rice (Oryza sativa L.). Environ Sci Technol 46:13176–13183

    Article  CAS  PubMed  Google Scholar 

  • Sheldon AR, Menzies NW (2005) The effect of copper toxicity on the growth and root morphology of Rhodes grass (Chloris gayana Knuth.) in resin buffered solution culture. Plant Soil 278:341–349

    Article  CAS  Google Scholar 

  • Shewry PR (2009) Wheat. J Exp Bot 60:1537–1553

    Article  CAS  PubMed  Google Scholar 

  • Shi GL, Lou LQ, Zhang S, Xia XW, Cai QS (2013) Arsenic, copper, and zinc contamination in soil and wheat during coal mining, with assessment of health risks for the inhabitants of Huaibei, China. Environ Sci Pollut Res 20:8435–8445

    Article  CAS  Google Scholar 

  • Shin H, Shin HS, Dewbre GR, Harrison MJ (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39:629–642

    Article  CAS  PubMed  Google Scholar 

  • Sneller FEC, Van Heerwaarden LM, Kraaijeveld-smit FJL, Ten Bookum WM, Koevoets PLM, Schat H, Verkleij JAC (1999) Toxicity of arsenate in Silene vulgaris, accumulation and degradation of arsenate-induced phytochelatins. New Phytol 144:223–232

    Article  CAS  Google Scholar 

  • Song W, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hötensteiner S, Geisler M, Weder B, Rea PA, Rentsh D, Schroeder J, Lee Y, Martionoia E (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci USA 107:21187–21192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sresty TVS, Rao MKV (1999) Ultrastructural alterations in response to zinc and nickel stress in the root cells of pigeonpea. Environ Exp Bot 41:3–13

    Article  CAS  Google Scholar 

  • Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, Reed W, Wang C, Cullen WR, Thomas DJ (2000) Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol 74:289–299

    Article  CAS  PubMed  Google Scholar 

  • Su Y, McGrath SP, Zhao F (2010) Rice is more efficient in arsenite uptake and translocation than wheat and barley. Plant Soil 328:27–34

    Article  CAS  Google Scholar 

  • Sun GX, Williams PN, Carey AM, Zhu YG, Deacon C, Raab A, Feldmann J, Islam RM, Meharg AA (2008) Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain. Environ Sci Technol 42:7542–7546

    Article  CAS  PubMed  Google Scholar 

  • Tao YQ, Zhang SZ, Jian W, Yuan CG, Shan XQ (2006) Effects of oxalate and phosphate on the release of arsenic from contaminated soils and arsenic accumulation in wheat. Chemosphere 65:1281–1287

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Ma LQ, Rathinasabapathi B, Liu Y, Zeng G (2010) Uptake and translocation of arsenite and arsenate by Pteris vittata L.: effects of silicon, boron and mercury. Environ Exp Bot 68:222–229

    Article  CAS  Google Scholar 

  • Wu Z, Ren H, McGrath SP, Wu P, Zhao FJ (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu XY, McGrath SP, Zhao FJ (2007) Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 176:590–599

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhao Q, Duan G, Huang Y (2011) Influence of sulphur on arsenic accumulation and metabolism in rice seedlings. Environ Exp Bot 72:34–40

    Article  CAS  Google Scholar 

  • Zhao F, Stroud JL, Eagling T, Dunham SJ, McGrath SP, Shewry PR (2010a) Accumulation, distribution, and speciation of arsenic in wheat grain. Environ Sci Technol 44:5464–5468

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Meharg AA, McGath SP (2010b) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Article  CAS  PubMed  Google Scholar 

  • Zhao F, Ago Y, Mitani N, Li R, Su Y, Yamaji N, McGath SP, Ma JF (2010c) The role of the rice aquaporin Lsi1 in arsenite efflux from roots. New Phytol 186:392–399

    Article  CAS  PubMed  Google Scholar 

  • Zheng M, Cai C, Hu Y, Sun G, Williams PN, Cui H, Li G, Zhao F, Zhu Y (2011) Spatial distribution of arsenic and temporal variation of its concentration in rice. New Phytol 189:200–209

    Article  CAS  PubMed  Google Scholar 

  • Zhong L, Hu C, Tan Q, Liu J, Sun X (2011) Effects of sulfur application on sulfur and arsenic absorption by rapeseed in arsenic-contaminated soil. Plant Soil Environ 57:429–434

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from the National Natural Science Foundation of China (No: 41201524), the Natural Science Foundation of Jiangsu Province (BK20131322), and the Research Fund for Postgraduate Scientific Research Innovation Project of Jiangsu Province (CXZZ13_0274) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lai Qing Lou or Qing Sheng Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, L.Q., Shi, G.L., Wu, J.H. et al. The Influence of Phosphorus on Arsenic Uptake/Efflux and As Toxicity to Wheat Roots in Comparison with Sulfur and Silicon. J Plant Growth Regul 34, 242–250 (2015). https://doi.org/10.1007/s00344-014-9460-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-014-9460-y

Keywords

Navigation