Skip to main content
Log in

Interspecies Variability of Plant Hormesis by the Antiauxin PCIB in a Laboratory Bioassay

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Chemical hormesis constitutes an alternative possible use of herbicidal agents for crop enhancement that is, however, compromised by the apparent variability of this low-dose stimulation phenomenon. Studies demonstrating the variability are rare and, therefore, this study investigated the interspecies variability of growth stimulation induced by the auxin-inhibitor PCIB [2-(p-chlorophenoxy)-2-methylpropionic acid] to determine if hormesis is generalizable enough and sufficiently stable between species/cultivars for practical use or which implications may have to be taken into account. In 85 complete dose–response bioassays with 23 cultivars of five species, the variability of PCIB effects was evaluated. The expression of PCIB hormesis proved to depend on the species/cultivar tested, ranging from a cultivar-dependent hormetic efficacy and an occasional lack of hormesis, to a complete lack of hormetic effectiveness in certain species/cultivars. Therefore, frequency estimations, as well as the pattern of dose-dependent variability of dose–response quantities, may inevitably depend on the biological model(s) used and, thus, apply only to the specific conditions for characterization. Comparing the frequency distribution of effective doses demonstrated a risk of a previously hormetic dose causing a loss of hormesis or inhibitory effects in another species/cultivar. Therefore, selecting a dose that will induce hormesis in every species/cultivar is unrealistic. This may limit the window for practical applications to stimulants with negligible varietal differences, to cultivar selective treatments, and/or to cultivars that enable a beneficial long-term use. Hence, efficient crop enhancement by chemical hormesis needs not only a good stimulant, but also a species/cultivar able to convert a specific low-dose treatment into an economic benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Appleby AP (1998) The practical implications of hormetic effects of herbicides on plants. Hum Exp Toxicol 17:270–271

    Article  CAS  PubMed  Google Scholar 

  • Belz RG (2008) Stimulation versus inhibition—bioactivity of parthenin, a phytochemical from Parthenium hysterophorus L. Dose-Response 6:80–96

    Article  PubMed Central  CAS  Google Scholar 

  • Belz RG, Cedergreen N (2010) Parthenin hormesis in plants depends on growth conditions. Environ Exp Bot 69:293–301

    Article  CAS  Google Scholar 

  • Belz RG, Piepho HP (2012) Modeling effective dosages in hormetic dose-response studies. PLoS ONE 7(3):e33432. doi:10.1371/journal.pone.0033432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Belz RG, Piepho HP (2013) Variability of hormetic dose responses of the antiauxin PCIB on Lactuca sativa in a plant bioassay. Weed Res. doi:10.1111/wre.12038

    Google Scholar 

  • Belz RG, Cedergreen N, Duke SO (2011) Herbicide hormesis: can it be useful in crop production? Weed Res 51:321–332

    Article  Google Scholar 

  • Calabrese EJ (2008) Hormesis: why it is important to toxicology and toxicologists. Environ Toxicol Chem 27:1451–1474

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Baldwin LA (2002) Defining hormesis. Hum Exp Toxicol 21:91–97

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Baldwin LA (2003) Hormesis: the dose–response revolution. Annu Rev Pharmacol Toxicol 43:175–197

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Blain RB (2011) The hormesis database: the occurrence of hormetic dose responses in the toxicological literature. Regul Toxicol Pharmacol 61:73–81

    Article  CAS  PubMed  Google Scholar 

  • Castellano D, Macías FA, Castellano M, Cambronero R (2001) FITOMED (automated system for the measurement of variable lengths). Spain Patent No. P9901565

  • Cedergreen N (2008a) Herbicides can stimulate plant growth. Weed Res 48:429–438

    Article  CAS  Google Scholar 

  • Cedergreen N (2008b) Is the growth stimulation by low doses of glyphosate sustained over time? Environ Pollut 156:1099–1104

    Article  CAS  PubMed  Google Scholar 

  • Cedergreen N, Ritz C, Streibig JC (2005) Improved empirical models describing hormesis. Environ Toxicol Chem 24:3166–3172

    Article  CAS  PubMed  Google Scholar 

  • Cedergreen N, Felby C, Porter JR, Streibig JC (2009) Chemical stress can increase crop yield. Field Crops Res 114:54–57

    Article  Google Scholar 

  • Dalley CD, Richard EP Jr (2010) Herbicides as ripeners for sugarcane. Weed Sci 58:329–333

    Article  CAS  Google Scholar 

  • De Almeida Silva M, Caputo MM (2012) Ripening and the use of ripeners for better sugarcane management. In: Marin F (ed) Crop management: cases and tools for higher yield and sustainability. InTech, Croatia, pp 3–24

    Google Scholar 

  • De Rybel B, Audenaert D, Beeckman T, Kepinsky S (2009) The past, present, and future of chemical biology in auxin research. ACS Chem Biol 4:987–998

    Article  PubMed  Google Scholar 

  • Duke SO, Cedergreen N, Velini D, Belz RG (2006) Hormesis: is it an important factor in herbicide use and allelopathy? Outlooks Pest Manag 17:29–33

    Google Scholar 

  • Dusky JA, Kang MS, Glaz B, Miller JD (1986) Response of eight sugarcane cultivars to glyphosine and glyphosate ripeners. J Plant Growth Regul 4:225–235

    Article  CAS  Google Scholar 

  • El-Shahawy FA, Sharara FAA (2011a) Hormetic effect of glyphosate on wheat and associated weeds. Int J Acad Res 3:520–523

    Google Scholar 

  • El-Shahawy FA, Sharara FAA (2011b) Hormesis influence of glyphosate in between increasing growth, yield and controlling weeds in faba bean. J Am Sci 7:139–144

    Google Scholar 

  • Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions, vol 2. Wiley, New York

    Google Scholar 

  • Legendre B., Gravois K (2012). Sugarcane ripener recommendations for 2012. http://cms.lsuagcenter.net/mcms/relatedfiles/%7BAD5CB0A5-F820-4391-BB04-F4F7FBE80AEB%7D/Recommendations---Ripeners-(2012).pdf. Accessed December 2013

  • McDonald L, Morgan T, Jackson P (2001) The effect of ripeners on the CCS of 47 sugarcane varieties in the burdekin. Proceedings of the 2001 Conference of the Australian Society of Sugar Cane Technologists, Mackay, Australia, 1–4 May 2001, pp 102–108

  • Millhollon RW, Legendre BL (2000) Growth and yield response of Louisiana sugarcane cultivars to annual preharvest treatments with the ripener glyphosate. Sugar Cane Int 18:5–9

    Google Scholar 

  • Mushak P (2013) How prevalent is chemical hormesis in the natural and experimental worlds? Sci Total Environ 443:573–581

    Article  CAS  PubMed  Google Scholar 

  • Nascarella MA, Calabrese EJ (2009) The relationship between the IC50, toxic threshold, and the magnitude of stimulatory response in biphasic (hormetic) dose-responses. Regul Toxicol Pharmacol 54:229–233

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez M, Snoek LB, Riksen JAG, Bevers RP, Kammenga JE (2012) Genetic variation for stress-response hormesis in C. elegans lifespan. Exp Gerontol 47:581–587

    Article  CAS  PubMed  Google Scholar 

  • Sarup P, Loeschcke V (2011) Life extension and the position of the hormetic zone depends on sex and genetic background in Drosophila melanogaster. Biogerontology 12:109–117

    Article  PubMed  Google Scholar 

  • Schabenberger O, Tharp BE, Kells JJ, Penner D (1999) Statistical tests for hormesis and effective dosages in herbicide dose response. Agron J 91:713–721

    Article  CAS  Google Scholar 

  • Streibig JC (1988) Herbicide bioassay. Weed Res 28:479–484

    Article  CAS  Google Scholar 

  • Streibig JC, Walker A, Blair AM and others (1995) Variability of bioassays with metsulfuron-methyl in soil. Weed Res 35:215–224

    Google Scholar 

  • Van Houwelingen HC, Arends LR, Stijnen T (2002) Advanced methods in meta-analysis: multivariate approach and meta-regression. Stat Med 21:589–624

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The technical assistance of Despina Savvidou is greatly acknowledged. RG Belz was funded by the German Research Foundation (DFG individual Grant, project BE 4189/1-1). We are also grateful to Dr. Stephen O. Duke and the unknown reviewers for commenting on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina G. Belz.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belz, R.G., Piepho, HP. Interspecies Variability of Plant Hormesis by the Antiauxin PCIB in a Laboratory Bioassay. J Plant Growth Regul 33, 499–512 (2014). https://doi.org/10.1007/s00344-013-9400-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-013-9400-2

Keywords

Navigation