Skip to main content
Log in

Mechanism and Significance of Chlorophyll Breakdown

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Chlorophyll breakdown is the most obvious sign of leaf senescence and fruit ripening. A multistep pathway has been elucidated in recent years that can be divided into two major parts. In the first phase, which commonly is active in higher plants, chlorophyll is converted via several photoreactive intermediates to a primary colorless breakdown product within the chloroplast. The second part of chlorophyll breakdown takes place in the cytosol and the vacuole. During this phase, the primary colorless intermediate is modified in largely species-specific reactions to a number of similar, yet structurally different, linear tetrapyrrolic products that finally are stored within the vacuole of senescing cells. To date, most of the biochemical reactions of the first phase of chlorophyll breakdown have been elucidated and genes have been identified. By contrast, mechanisms of catabolite transport and modification during the second phase are largely unknown. This review summarizes the current knowledge on the biochemical reactions involved in chlorophyll breakdown, with a special focus on the second-phase reactions and the fate of by-products that are released from chlorophyll during its breakdown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Armstead I, Donnison I, Aubry S et al (2007) Cross-species identification of Mendel’s I locus. Science 315:73

    Article  CAS  PubMed  Google Scholar 

  • Aubry S, Mani J, Hörtensteiner S (2008) Stay-green protein, defective in Mendel’s green cotyledon mutant, acts independent and upstream of pheophorbide a oxygenase in the chlorophyll catabolic pathway. Plant Mol Biol 67:243–256

    Article  CAS  PubMed  Google Scholar 

  • Azoulay-Shemer T, Harpaz-Saad S, Cohen-Peer R et al (2011) Dual N- and C-terminal processing of citrus chlorophyllase precursor within the plastid membranes leads to the mature enzyme. Plant Cell Physiol 52:70–83

    Article  CAS  PubMed  Google Scholar 

  • Bak S, Beisson F, Bishop G et al (2011) Cytochromes P450. Arabidopsis Book 9:e0144

    Article  PubMed Central  PubMed  Google Scholar 

  • Banala S, Moser S, Müller T et al (2010) Hypermodified fluorescent chlorophyll catabolites: source of blue luminescence in senescent leaves. Angew Chem Int Ed 49:5174–5177

    Article  CAS  Google Scholar 

  • Barrett J, Jeffrey SW (1964) Chlorophyllase and formation of an atypical chlorophyllide in marine algae. Plant Physiol 39:44–47

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barry CS, McQuinn RP, Chung MY (2008) Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper. Plant Physiol Biochem 147:179–187

    CAS  Google Scholar 

  • Benedetti CE, Arruda P (2002) Altering the expression of the chlorophyllase gene ATHCOR1 in transgenic Arabidopsis caused changes in the chlorophyll-to-chlorophyllide ratio. Plant Physiol 128:1255–1263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berghold J, Breuker K, Oberhuber M et al (2002) Chlorophyll breakdown in spinach: on the structure of five nonfluorescent chlorophyll catabolites. Photosynth Res 74:109–119

    Article  CAS  PubMed  Google Scholar 

  • Berghold J, Eichmüller C, Hörtensteiner S, Kräutler B (2004) Chlorophyll breakdown in tobacco: on the structure of two nonfluorescent chlorophyll catabolites. Chem Biodivers 1:657–668

    Article  CAS  PubMed  Google Scholar 

  • Berghold J, Müller T, Ulrich M (2006) Chlorophyll breakdown in maize: on the structure of two nonfluorescent chlorophyll catabolites. Monatsh Chem 137:751–763

    Article  CAS  Google Scholar 

  • Brandis A, Vainstein A, Goldschmidt EE (1996) Distribution of chlorophyllase among components of chloroplast membranes in Citrus sinensis organs. Plant Physiol Biochem 34:49–54

    CAS  Google Scholar 

  • Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510

    Article  CAS  PubMed  Google Scholar 

  • Büchert AM, Civello PM, Martínez GA (2011) Characterization of Mg-dechelating substance in senescent and pre-senescent Arabidopsis thaliana leaves. Biol Plant 55:75–82

    Article  CAS  Google Scholar 

  • Christ B, Schelbert S, Aubry S et al (2012) MES16, a member of the methylesterase protein family, specifically demethylates fluorescent chlorophyll catabolites during chlorophyll breakdown in Arabidopsis. Plant Physiol 158:628–641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Christ B, Süssenbacher I, Moser S et al (2013) Cytochrome P450 CYP89A9 is involved in the formation of major chlorophyll catabolites during leaf senescence in Arabidopsis. Plant Cell 25:1868–1880

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Curty C, Engel N (1996) Detection, isolation and structure elucidation of a chlorophyll a catabolite from autumnal senescent leaves of Cercidiphyllum japonicum. Phytochemistry 42:1531–1536

    Article  CAS  Google Scholar 

  • Dosnon-Olette R, Schröder P, Bartha B et al (2011) Enzymatic basis for fungicide removal by Elodea canadensis. Environ Sci Pollut Res 18:1015–1021

    Article  CAS  Google Scholar 

  • Downie A, Miyazaki S, Bohnert H et al (2004) Expression profiling of the response of Arabidopsis thaliana to methanol stimulation. Phytochemistry 65:2305–2316

    Article  CAS  PubMed  Google Scholar 

  • Fall R, Benson AA (1996) Leaf methanol—the simplest natural product from plants. Trends Plant Sci 1:296–301

    Article  Google Scholar 

  • Feller U, Anders I, Mae T (2008) Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. J Exp Bot 59:1615–1624

    Article  CAS  PubMed  Google Scholar 

  • Ginsburg S, Matile P (1993) Identification of catabolites of chlorophyll porphyrin in senescent rape cotyledons. Plant Physiol 102:521–527

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ginsburg S, Schellenberg M, Matile P (1994) Cleavage of chlorophyll-porphyrin. Requirement for reduced ferredoxin and oxygen. Plant Physiol 105:545–554

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gout E, Aubert S, Bligny R et al (2000) Metabolism of methanol in plant cells. Carbon-13 nuclear magnetic resonance studies. Plant Physiol 123:287–296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gray J, Janick-Bruckner D, Bruckner B et al (2002) Light-dependent death of maize lls1 cells is mediated by mature chloroplasts. Plant Physiol 130:1894–1907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Greenberg JT, Ausubel FM (1993) Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging. Plant J 4:327–341

    Article  CAS  PubMed  Google Scholar 

  • Harpaz-Saad S, Azoulay T, Arazi T et al (2007) Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated. Plant Cell 19:1007–1022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirashima M, Satoh S, Tanaka R, Tanaka A (2006) Pigment shuffling in antenna systems achieved by expressing prokaryotic chlorophyllide a oxygenase in Arabidopsis. J Biol Chem 281:15385–15393

    Article  CAS  PubMed  Google Scholar 

  • Hirashima M, Tanaka R, Tanaka A (2009) Light-independent cell death induced by accumulation of pheophorbide a in Arabidopsis thaliana. Plant Cell Physiol 50:719–729

    Article  CAS  PubMed  Google Scholar 

  • Holden M (1961) The breakdown of chlorophyll by chlorophyllase. Biochem J 78:359–364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horie Y, Ito H, Kusaba M et al (2009) Participation of chlorophyll b reductase in the initial step of the degradation of light-harvesting chlorophyll a/b-protein complexes in Arabidopsis. J Biol Chem 284:17449–17456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hörtensteiner S (1998) NCC malonyltransferase catalyses the final step of chlorophyll breakdown in rape (Brassica napus). Phytochemistry 49:953–956

    Article  PubMed  Google Scholar 

  • Hörtensteiner S (2006) Chlorophyll degradation during senescence. Annu Rev Plant Biol 57:55–77

    Article  PubMed  CAS  Google Scholar 

  • Hörtensteiner S (2009) Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci 14:155–162

    Article  PubMed  CAS  Google Scholar 

  • Hörtensteiner S (2013) Update on the biochemistry of chlorophyll breakdown. Plant Mol Biol 82(6):505–517

    Article  PubMed  CAS  Google Scholar 

  • Hörtensteiner S, Feller U (2002) Nitrogen metabolism and remobilization during senescence. J Exp Bot 53:927–937

    Article  PubMed  Google Scholar 

  • Hörtensteiner S, Kräutler B (2011) Chlorophyll breakdown in higher plants. Biochim Biophys Acta 1807:977–988

    Article  PubMed  CAS  Google Scholar 

  • Hörtensteiner S, Vicentini F, Matile P (1995) Chlorophyll breakdown in senescent cotyledons of rape, Brassica napus L.: enzymatic cleavage of phaeophorbide a in vitro. New Phytol 129:237–246

    Article  Google Scholar 

  • Hörtensteiner S, Wüthrich KL, Matile P et al (1998) The key step in chlorophyll breakdown in higher plants. Cleavage of pheophorbide a macrocycle by a monooxygenase. J Biol Chem 273:15335–15339

    Article  PubMed  Google Scholar 

  • Hörtensteiner S, Rodoni S, Schellenberg M et al (2000) Evolution of chlorophyll degradation: the significance of RCC reductase. Plant Biol 2:63–67

    Article  Google Scholar 

  • Igamberdiev AU, Bykova NV, Kleczkowski LA (1999) Origins and metabolism of formate in higher plants. Plant Physiol Biochem 37:503–513

    Article  CAS  Google Scholar 

  • Ischebeck T, Zbierzak AM, Kanwischer M, Dörmann P (2006) A salvage pathway for phytol metabolism in Arabidopsis. J Biol Chem 281:2470–2477

    Article  CAS  PubMed  Google Scholar 

  • Iturraspe J, Moyano N, Frydman B (1995) A new 5-formylbilinone as the major chlorophyll a catabolite in tree senescent leaves. J Org Chem 60:6664–6665

    Article  CAS  Google Scholar 

  • Jakob-Wilk D, Holland D, Goldschmidt EE et al (1999) Chlorophyll breakdown by chlorophyllase: isolation and functional expression of the Chlase1 gene from ethylene-treated Citrus fruit and its regulation during development. Plant J 20:653–661

    Article  Google Scholar 

  • Jiang H, Li M, Liang N et al (2007) Molecular cloning and function analysis of the stay green gene in rice. Plant J 52:197–209

    Article  CAS  PubMed  Google Scholar 

  • Jonker JW, Buitelaar M, Wagenaar E et al (2002) The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci USA 99:15649–15654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kang K, Kim Y-S, Park S, Back K (2009) Senescence-induced serotonin biosynthesis and its role in delaying senescence in rice leaves. Plant Physiol 150:1380–1393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kang J, Park J, Choi H et al (2011a) Plant ABC transporters. Arabidopsis Book 9:e0153

    Article  PubMed Central  PubMed  Google Scholar 

  • Kang K, Park S, Natsagdorj U et al (2011b) Methanol is an endogenous elicitor molecule for the synthesis of tryptophan and tryptophan-derived secondary metabolites upon senescence of detached rice leaves. Plant J 66:247–257

    Article  CAS  PubMed  Google Scholar 

  • Kariola T, Brader G, Li J, Palva ET (2005) Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. Plant Cell 17:282–294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kleffmann T, Russenberger D, von Zychlinski A et al (2004) The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol 14:354–362

    Article  CAS  PubMed  Google Scholar 

  • Kräutler B, Jaun B, Bortlik K-H et al (1991) On the enigma of chlorophyll degradation: the constitution of a secoporphinoid catabolite. Angew Chem Int Ed 30:1315–1318

    Article  Google Scholar 

  • Kräutler B, Banala S, Moser S et al (2010) A novel blue fluorescent chlorophyll catabolite accumulates in senescent leaves of the peace lily (Spathiphyllum wallisii) and indicates a divergent path of chlorophyll breakdown. FEBS Lett 584:4215–4221

    Article  PubMed  CAS  Google Scholar 

  • Kusaba M, Ito H, Morita R et al (2007) Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 19:1362–1375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li R, Ziola B, King J (2000) Purification and characterization of formate dehydrogenase from Arabidopsis thaliana. J Plant Physiol 157:161–167

    Article  CAS  Google Scholar 

  • Li R, Moore M, Bonham-Smith PC, King J (2002) Overexpression of formate dehydrogenase in Arabidopsis thaliana resulted in plants tolerant to high concentrations of formate. J Plant Physiol 159:1069–1076

    Article  CAS  Google Scholar 

  • Lippold F, Dorp K, vom Abraham M et al (2012) Fatty acid phytyl ester synthesis in chloroplasts of Arabidopsis. Plant Cell 24:2001–2014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Losey FG, Engel N (2001) Isolation and characterization of a urobilinogenoidic chlorophyll catabolite from Hordeum vulgare L. J Biol Chem 276:27233–27236

    Article  Google Scholar 

  • Lu YP, Li ZS, Drozdowicz YM et al (1998) AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: functional comparisons with AtMRP1. Plant Cell 10:267–282

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lundquist PK, Poliakov A, Bhuiyan NH et al (2012) The functional network of the Arabidopsis plastoglobule proteome based on quantitative proteomics and genome-wide coexpression analysis. Plant Physiol 158:1172–1192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luo Z, Zhang J, Li J et al (2013) A STAY-GREEN protein SlSGR1 regulates lycopene and β-carotene accumulation by interacting directly with SlPSY1 during ripening processes in tomato. New Phytol 198(2):442–452

    Article  CAS  PubMed  Google Scholar 

  • Mach JM, Castillo AR, Hoogstraten R, Greenberg JT (2001) The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proc Natl Acad Sci USA 98:771–776

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Makino A, Osmond B (1991) Effect of nitrogen nutrition on nitrogen partitioning between chloroplasts and mitochondria in pea and wheat. Plant Physiol 96:355–362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matile P, Schellenberg M, Peisker C (1992) Production and release of a chlorophyll catabolite in isolated senescent chloroplasts. Planta 187:230–235

    Article  CAS  PubMed  Google Scholar 

  • Matile P, Hörtensteiner S, Thomas H, Kräutler B (1996) Chlorophyll breakdown in senescent leaves. Plant Physiol 112:1403–1409

    PubMed Central  CAS  PubMed  Google Scholar 

  • Matile P, Schellenberg M, Vicentini F (1997) Localization of chlorophyllase in the chloroplast envelope. Planta 201:96–99

    Article  CAS  Google Scholar 

  • Matile P, Hörtensteiner S, Thomas H (1999) Chlorophyll degradation. Annu Rev Plant Physiol Plant Mol Biol 50:67–95

    Article  CAS  PubMed  Google Scholar 

  • Mayer H (1930) Untersuchungen über die Chlorophyllase. Planta 11:294–330

    Article  CAS  Google Scholar 

  • Mecey C, Hauck P, Trapp M et al (2011) A critical role of STAYGREEN/Mendel’s I locus in controlling disease symptom development during Pseudomonas syringae pv tomato infection of Arabidopsis. Plant Physiol 157:1965–1974

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meguro M, Ito H, Takabayashi A et al (2011) Identification of the 7-hydroxymethyl chlorophyll a reductase of the chlorophyll cycle in Arabidopsis. Plant Cell 23:3442–3453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mendel G (1866) Versuche über Pflanzenhybriden. Verh Naturforsch Ver Brünn 4:3–47

    Google Scholar 

  • Mochizuki N, Brusslan JA, Larkin R et al (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci USA 98:2053–2058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morita R, Sato Y, Masuda Y et al (2009) Defect in non-yellow coloring 3, an α/β hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J 59:940–952

    Article  CAS  PubMed  Google Scholar 

  • Moser S, Aarts M, Müller T, Kräutler B (2008a) A yellow chlorophyll catabolite is a pigment of the fall colours. Photochem Photobiol Sci 7:1577–1581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moser S, Müller T, Ebert MO et al (2008b) Blue luminescence of ripening bananas. Angew Chem Int Ed 47:8954–8957

    Article  CAS  Google Scholar 

  • Moser S, Müller T, Holzinger A et al (2009) Fluorescent chlorophyll catabolites in bananas light up blue halos of cell death. Proc Natl Acad Sci USA 106:15538–15543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mühlecker W, Kräutler B (1996) Breakdown of chlorophyll: constitution of nonfluorescing chlorophyll-catabolites from senescent cotyledons of the dicot rape. Plant Physiol Biochem 34:61–75

    Google Scholar 

  • Mühlecker W, Ongania KH, Kräutler B et al (1997) Tracking down chlorophyll breakdown in plants: elucidation of the constitution of a “fluorescent” chlorophyll catabolite. Angew Chem Int Ed 36:401–404

    Article  Google Scholar 

  • Mühlecker W, Kräutler B, Moser D et al (2000) Breakdown of chlorophyll: a fluorescent chlorophyll catabolite from sweet pepper (Capsicum annuum). Helv Chim Acta 83:278–286

    Article  Google Scholar 

  • Müller T, Moser S, Ongania KH et al (2006) A divergent path of chlorophyll breakdown in the model plant Arabidopsis thaliana. ChemBioChem 7:40–42

    Article  PubMed  CAS  Google Scholar 

  • Müller T, Ulrich M, Ongania KH, Kräutler B (2007) Colorless tetrapyrrolic chlorophyll catabolites found in ripening fruit are effective antioxidants. Angew Chem Int Ed 46:8699–8702

    Article  CAS  Google Scholar 

  • Müller T, Rafelsberger M, Vergeiner C, Kräutler B (2011) A dioxobilane as product of a divergent path of chlorophyll breakdown in Norway maple. Angew Chem Int Ed 50:10724–10727

    Article  CAS  Google Scholar 

  • Mur LAJ, Aubry S, Mondhe M et al (2010) Accumulation of chlorophyll catabolites photosensitizes the hypersensitive response elicited by Pseudomonas syringae in Arabidopsis. New Phytol 188:161–174

    Article  CAS  PubMed  Google Scholar 

  • Nakajima S, Ito H, Tanaka R, Tanaka A (2012) Chlorophyll b reductase plays an essential role in maturation and storability of Arabidopsis seeds. Plant Physiol 160:261–273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Obayashi T, Hayashi S, Saeki M et al (2009) ATTED-II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Res 37:D987–D991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oberhuber M, Berghold J, Mühlecker W et al (2001) Chlorophyll breakdown—on a nonfluorescent chlorophyll catabolite from spinach. Helv Chim Acta 84:2615–2627

    Article  CAS  Google Scholar 

  • Oberhuber M, Berghold J, Breuker K et al (2003) Breakdown of chlorophyll: a nonenzymatic reaction accounts for the formation of the colorless “nonfluorescent” chlorophyll catabolites. Proc Natl Acad Sci USA 100:6910–6915

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olson BJ, Skavdahl M, Ramberg H, Osterman JC, Markwell J (2000) Formate dehydrogenase in Arabidopsis thaliana: characterization and possible targeting to the chloroplast. Plant Sci 159:205–212

    Article  CAS  PubMed  Google Scholar 

  • Osmani SA, Bak S, Møller BL (2009) Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling. Phytochemistry 70:325–347

    Article  CAS  PubMed  Google Scholar 

  • Paquette S, Møller BL, Bak S (2003) On the origin of family 1 plant glycosyltransferases. Phytochemistry 62:399–413

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Yu JW, Park JS et al (2007) The senescence-induced STAYGREEN protein regulates chlorophyll degradation. Plant Cell 19:1649–1664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pattanayak GK, Venkataramani S, Hortensteiner S et al (2012) ACCELERATED CELL DEATH 2 suppresses mitochondrial oxidative bursts and modulates cell death in Arabidopsis. Plant J 69:589–600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pedras MSC, Zaharia IL, Gai Y et al (2001) In planta sequential hydroxylation and glycosylation of a fungal phytotoxin: avoiding cell death and overcoming the fungal invader. Proc Natl Acad Sci USA 98:747–752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peoples MB, Dalling MJ (1988) The interplay between proteolysis and amino acid metabolism during senescence and nitrogen allocation. In: Noodén LD, Leopold AC (eds) Senescence Aging Plants. Academic Press, San Diego, pp 181–217

    Google Scholar 

  • Pružinská A, Anders I, Tanner G et al (2003) Chlorophyll breakdown: pheophorbide a oxygenase is a Rieske-type iron-sulfur protein, encoded by the accelerated cell death 1 gene. Proc Natl Acad Sci USA 100:15259–15264

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pružinská A, Tanner G, Aubry S et al (2005) Chlorophyll breakdown in senescent Arabidopsis leaves: characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. Plant Physiol 139:52–63

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pružinská A, Anders I, Aubry S et al (2007) In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown. Plant Cell 19:369–387

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ren G, An K, Liao Y et al (2007) Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiol 144:1429–1441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ren GD, Zhou Q, Wu SX et al (2010) Reverse genetic identification of CRN1 and its distinctive role in chlorophyll degradation in Arabidopsis. J Integr Plant Biol 52:496–504

    CAS  PubMed  Google Scholar 

  • Rodoni S, Mühlecker W, Anderl M et al (1997) Chlorophyll breakdown in senescent chloroplasts. Cleavage of pheophorbide a in two enzymic steps. Plant Physiol 115:669–676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saga Y, Tamiaki H (2012) Demetalation of chlorophyll pigments. Chem Biodivers 9:1659–1683

    Article  CAS  PubMed  Google Scholar 

  • Sakuraba Y, Yokono M, Akimoto S et al (2010) Deregulated chlorophyll b synthesis reduces the energy transfer rate between photosynthetic pigments and induces photodamage in Arabidopsis thaliana. Plant Cell Physiol 51:1055–1065

    Article  CAS  PubMed  Google Scholar 

  • Sakuraba Y, Balazadeh S, Tanaka R et al (2012a) Overproduction of Chl b retards senescence through transcriptional reprogramming in Arabidopsis. Plant Cell Physiol 53:505–517

    Article  CAS  PubMed  Google Scholar 

  • Sakuraba Y, Schelbert S, Park SY et al (2012b) STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complex II for chlorophyll detoxification during leaf senescence in Arabidopsis. Plant Cell 24:507–518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sakuraba Y, Kim YS, Yoo SC et al (2013) 7-Hydroxymethyl chlorophyll a reductase functions in metabolic channeling of chlorophyll breakdown intermediates during leaf senescence. Biochem Biophys Res Commun 430:32–37

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Moria R, Katsuma S (2009) Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J 57:120–131

    Article  CAS  PubMed  Google Scholar 

  • Scheer H (2006) An overview of chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. In: Grimm B, Porra R, Rüdiger W, Scheer H (eds) Chlorophylls bacteriochlorophylls biochemistry biophysics functions and applications. Springer, Dordrecht, pp 1–26

    Chapter  Google Scholar 

  • Schelbert S, Aubry S, Burla B et al (2009) Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell 21:767–785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schellenberg M, Matile P, Thomas H (1990) Breakdown of chlorophyll in chloroplasts of senescent barley leaves depends on ATP. J Plant Physiol 136:564–568

    Article  CAS  Google Scholar 

  • Schellenberg M, Matile P, Thomas H (1993) Production of a presumptive chlorophyll catabolite in vitro: requirement for reduced ferredoxin. Planta 191:417–420

    Article  CAS  Google Scholar 

  • Schenk N, Schelbert S, Kanwischer M et al (2007) The chlorophyllases AtCLH1 and AtCLH2 are not essential for senescence-related chlorophyll breakdown in Arabidopsis thaliana. FEBS Lett 581:5517–5525

    Article  CAS  PubMed  Google Scholar 

  • Scherl M, Müller T, Kräutler B (2012) Chlorophyll catabolites in senescent leaves of the lime tree (Tilia cordata). Chem Biodivers 9:2605–2617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schuler MA, Duan H, Bilgin M, Ali S (2006) Arabidopsis cytochrome P450s through the looking glass: a window on plant biochemistry. Phytochem Rev 5:205–237

    Article  CAS  Google Scholar 

  • Shimoda Y, Ito H, Tanaka A (2012) Conversion of chlorophyll b to chlorophyll a precedes magnesium dechelation for protection against necrosis in Arabidopsis. Plant J 72:501–511

    Article  CAS  PubMed  Google Scholar 

  • Shioi Y, Tomita N, Tsuchiya T, Takamiya K (1996a) Conversion of chlorophyllide to pheophorbide by Mg-dechelating substance in extracts of Chenopodium album. Plant Physiol Biochem 34:41–47

    CAS  Google Scholar 

  • Shioi Y, Watanabe K, Takamiya K (1996b) Enzymatic conversion of pheophorbide a to a precursor of pyropheophorbide a in leaves of Chenopodium album. Plant Cell Physiol 37:1143–1149

    Article  CAS  Google Scholar 

  • Spassieva S, Hille J (2002) A lesion mimic phenotype in tomato obtained by isolating and silencing an Lls1 homologue. Plant Sci 162:543–549

    Article  CAS  Google Scholar 

  • Sugishima M, Kitamori Y, Noguchi M et al (2009) Crystal structure of red chlorophyll catabolite reductase: enlargement of the ferredoxin-dependent bilin reductase family. J Mol Biol 389:376–387

    Article  CAS  PubMed  Google Scholar 

  • Sugishima M, Okamoto Y, Noguchi M et al (2010) Crystal structures of the substrate-bound forms of red chlorophyll catabolite reductase: implications for site-specific and stereospecific reaction. J Mol Biol 402:879–891

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Shioi Y (1999) Detection of chlorophyll breakdown products in the senescent leaves of higher plants. Plant Cell Physiol 40:909–915

    Article  CAS  Google Scholar 

  • Suzuki T, Shioi Y (2002) Re-examination of Mg-dechelation reaction in the degradation of chlorophylls using chlorophyllin a as substrate. Photosynth Res 74:217–223

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Tanabe K, Shioi Y (1999) Determination of chemical oxidation products of chlorophyll and porphyrin by high-performance liquid chromatography. J Chromatogr A 839:85–91

    Article  CAS  Google Scholar 

  • Suzuki Y, Doi M, Shioi Y (2002) Two enzymatic reaction pathways in the formation of pyropheophorbide a. Photosynth Res 74:225–233

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Amano T, Shioi Y (2006) Characterization and cloning of the chlorophyll-degrading enzyme pheophorbidase from cotyledons of radish. Plant Physiol 140:716–725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanaka R, Tanaka A (2011) Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes. Biochim Biophys Acta 1807:968–976

    Article  CAS  PubMed  Google Scholar 

  • Tanaka R, Hirashima M, Satoh S, Tanaka A (2003) The Arabidopsis-accelerated cell death gene ACD1 is involved in oxygenation of pheophorbide a: inhibition of pheophorbide a oxygenase activity does not lead to the “stay-green” phenotype in Arabidopsis. Plant Cell Physiol 44:1266–1274

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Li M, Chen Y et al (2011) Knockdown of OsPAO and OsRCCR1 causes different plant death phenotypes in rice. J Plant Physiol 168:1952–1959

    Article  CAS  PubMed  Google Scholar 

  • Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51:329–337

    Article  CAS  PubMed  Google Scholar 

  • Tommasini R, Vogt E, Fromenteau M et al (1998) An ABC transporter of Arabidopsis thaliana has both glutathione-conjugate and chlorophyll catabolite transport activity. Plant J 13:773–780

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya T, Ohta H, Okawa K et al (1999) Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. Proc Natl Acad Sci USA 96:15362–15367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Valentin HE, Lincoln K, Moshiri F et al (2006) The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell 18:212–224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vergeiner C, Banala S, Kräutler B (2013) Chlorophyll breakdown in senescent banana leaves: catabolism reprogrammed for biosynthesis of persistent blue fluorescent tetrapyrroles. Chem Eur J 19(37):12294–12305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vicentini F, Iten F, Matile P (1995) Development of an assay for Mg-dechelatase of oilseed rape cotyledons, using chlorophyllin as the substrate. Physiol Plant 94:57–63

    Article  CAS  Google Scholar 

  • Wagner D, Przybyla D, op den Camp R et al (2004) The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science 306:1183–1185

    Article  CAS  PubMed  Google Scholar 

  • Willstätter R, Stoll A (1911) Examinations on chlorophyll, XI chlorophyllase. Justus Liebigs Ann Chem 378:18–72

    Article  Google Scholar 

  • Wüthrich KL, Bovet L, Hunziker PE et al (2000) Molecular cloning, functional expression and characterisation of RCC reductase involved in chlorophyll catabolism. Plant J 21:189–198

    Article  PubMed  Google Scholar 

  • Yao N, Greenberg JT (2006) Arabidopsis ACCELERATED CELL DEATH2 modulates programmed cell death. Plant Cell 18:397–411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang K, Gan SS (2012) An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves. Plant Physiol 158:961–969

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou C, Han L, Pislariu C et al (2011) From model to crop: functional analysis of a STAY-GREEN gene in the model legume Medicago truncatula and effective use of the gene for Alfalfa improvement. Plant Physiol 157:1483–1496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work on chlorophyll breakdown was financially supported by grants from the Swiss National Science Foundation, the National Center of Competence in Research Plant Survival, a research program of the Swiss National Science Foundation, and CropLife, a European FP7 Marie-Curie Initial Training Network project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hörtensteiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christ, B., Hörtensteiner, S. Mechanism and Significance of Chlorophyll Breakdown. J Plant Growth Regul 33, 4–20 (2014). https://doi.org/10.1007/s00344-013-9392-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-013-9392-y

Keywords

Navigation