Skip to main content

Advertisement

Log in

Synthetic Auxin 3,5,6-TPA Provokes Citrus clementina (Hort. ex Tan) Fruitlet Abscission by Reducing Photosynthate Availability

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the effects of the synthetic auxin 3,5,6-trichloro-2-pirydiloxyacetic acid (3,5,6-TPA) on photosynthetic activity, photosynthate transport to the fruit, and fruitlet abscission to further explain the physiological basis of auxin-mediated citrus fruit thinning. Applying 15 mg l−1 3,5,6-TPA to trees during the fruit cell division stage significantly increased fruitlet abscission of Clementine mandarin. On treated trees, abnormal foliar development and photosynthetic damage were observed at the same time as 3,5,6-TPA reduced fruitlet growth rate. Briefly, treatment reduced chlorophyll and carotenoid concentrations and modified chlorophyll a fluorescence parameters, that is, reduced the quantum yield (ФPSII) of the noncyclic electron transport rate, diminished the capacity to reduce the quinone pool (photochemical quenching; qp), and increased nonphotochemical quenching (q N), thereby preventing the dissipation of excess excitation energy. In addition, the net photosynthetic flux (μmol CO2 m−2 s−1) and leaf photosynthate content decreased in treated trees. As a result, the 3,5,6-TPA treatment significantly reduced the photosynthate accumulation in fruit from day 3 to day 8 after treatment, thus reducing fruitlet growth rate. Hence, treated fruitlets significantly increased ethylene production and abscised. Twenty days after treatment, chlorophyll a fluorescence parameters and fruitlet growth rate were reestablished. Accordingly, the thinning effect of 3,5,6-TPA may be due to a temporarily induced photosynthetic disorder that leads to reduction in photosynthate production and fruitlet uptake that temporarily slows its growth, triggering ethylene production and fruitlet abscission. Afterward, the remaining treated fruit overcame this effect, increased growth rate, and reached a larger size than control fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agustí M, El-Otmani M, Aznar M, Juan M, Almela V (1995) Effect of 3,5,6-trichloro-2-pirydiloxyacetic acid on clementine early fruitlet development and on fruit size at maturity. J Hortic Sci 70:955–962

    Google Scholar 

  • Agustí M, Zaragoza S, Iglesias DJ, Almela V, Primo-Millo E, Talón M (2002) The synthetic auxin 3,5,6-TPA stimulates carbohydrate accumulation and growth in citrus fruit. Plant Growth Regul 36:141–147

    Article  Google Scholar 

  • Agustí M, Juan M, Almela V (2007) Response of ‘Clausellina’ Satsuma mandarin to 3,5,6-trichloro-2-pirydiloxyacetic acid and fruitlet abscission. Plant Growth Regul 53:129–135

    Article  Google Scholar 

  • Aloni R (2010) The induction of vascular tissues by auxin. In: Davies PJ (ed) Plant hormones. Biosynthesis, signal transduction, action!. Springer, Amsterdam, pp 485–506

    Google Scholar 

  • Aznar M, Almela V, Juan M, El-Otmani M, Agustí M (1995) Effect of the synthetic auxin phenothiol on fruit development of ‘Fortune’ mandarin. J Hort Sci 70:617–621

    CAS  Google Scholar 

  • Bangerth F (2000) Abscission and thinning of young fruit and their regulation by plant hormones and bioregulators. Plant Growth Regul 31:43–59

    Article  CAS  Google Scholar 

  • Bilger W, Björkman O (1991) Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L. Planta 184:226–234

    Article  CAS  Google Scholar 

  • Calatayud A, Iglesias DJ, Talón M, Barreno E (2004) Response of spinach leaves (Spinacia oleracea L.) to ozone measured by gas exchange, chlorophyll a fluorescence, antioxidant systems, and lipid peroxidation. Photosynthetica 42:23–29

    Article  CAS  Google Scholar 

  • Calatayud A, Iglesias DJ, Talón M, Barreno E (2006) Effects of long-term ozone exposure on citrus: chlorophyll a fluorescence and gas exchange. Photosynthetica 44:548–554

    Article  CAS  Google Scholar 

  • Davies BH (1976) Carotenoids. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments. Academic Press, New York, pp 38–165

    Google Scholar 

  • Demming-Adams B, Adams WW III (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26

    Article  Google Scholar 

  • El-Otmani M, Coggins CW Jr, Agustí M, Lovatt CJ (2000) Plant growth regulators in Citriculture: World current uses. Crit Rev Plant Sci 19:395–447

    Article  CAS  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Goldschmidt EE, Monselise SP (1977) Physiological assumptions toward the development of a Citrus fruiting model. Proc Int Soc Citriculture 2:668–672

    Google Scholar 

  • Gómez-Cadenas A, Mehouachi J, Tadeo FR, Primo-Millo E, Talon M (2000) Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in citrus. Planta 210:636–643

    Article  PubMed  Google Scholar 

  • Iglesias D, Lliso I, Tadeo FR, Talón M (2002) Regulation of photosynthesis through source: sink imbalance in citrus is mediated by carbohydrate content in leaves. Physiol Plant 116:563–572

    Article  CAS  Google Scholar 

  • Iglesias DJ, Tadeo FR, Primo-Millo E, Talon M (2006) Carbohydrate and ethylene levels regulate citrus fruitlet drop through the abscission zone A during early development. Trees 20:348–355

    Article  CAS  Google Scholar 

  • Iwahori S, Oohata JT (1976) Chemical thinning of ‘Satsuma’ mandarin (Citrus unshiu Marc.) fruit by 1 naphthalene acetic acid: role of ethylene and cellulase. Sci Hortic Amsterdam 4:167–174

    Article  CAS  Google Scholar 

  • Martínez-Fuentes A, Mesejo C, Reig C, Agustí M (2010) Timing of the inhibitory effect of fruit on return bloom of ‘Valencia’ sweet orange (Citrus sinensis (L.) Osbeck). J Sci Food Agric 90:1936–1943

    PubMed  Google Scholar 

  • Mauk CS, Bausher MG, Yelenosky G (1986) Influence of growth regulator treatments on dry matter production, fruit abscission, and 14C-assimilate partitioning in Citrus. J Plant Growth Regul 5:111–120

    Article  CAS  Google Scholar 

  • Meir S, Hunter DA, Chen JC, Halaly V, Reid MS (2006) Molecular changes occurring during acquisition of abscission competence following auxin depletion in Mirabilis jalapa. Plant Physiol 141:1604–1616

    Article  PubMed  CAS  Google Scholar 

  • Mesejo C, Martínez-Fuentes A, Juan M, Almela V, Agustí M (2003) Vascular tissues development of citrus fruit peduncle is promoted by synthetic auxins. Plant Growth Regul 39:131–135

    Article  CAS  Google Scholar 

  • Okuda H, Hirabayashi T (1998) Effect of IAA gradient between the peduncle and branch on physiological drop of citrus fruit (Kiyomi tangor). J Hortic Sci Biotechnol 73:618–621

    CAS  Google Scholar 

  • Paterson SE (2001) Cutting loose. Abscission and dehiscence in Arabidopsis. Plant Physiol 126:494–500

    Article  Google Scholar 

  • Rivas F, Erner Y, Alós E, Juan M, Almela V, Agustí M (2006) Girdling increases carbohydrate availability and fruit-set in citrus cultivars irrespective of parthenocarpic ability. J Hortic Sci Biotechnol 81:289–295

    CAS  Google Scholar 

  • Rivas F, Gravina A, Agustí M (2007) Girdling effects on fruit set and quantum yield efficiency of PSII in two Citrus cultivars. Tree Physiol 27:527–535

    Article  PubMed  CAS  Google Scholar 

  • Rodrigo MJ, Marcos JF, Alférez F, Mallent MD, Zacarías L (2003) Characterization of Pinalate, a novel Citrus sinensis mutant with a fruit-specific alteration that results in yellow pigmentation and decreased ABA content. J Exp Bot 54:727–738

    Article  PubMed  CAS  Google Scholar 

  • Romero-Puertas MC, McCarthy I, Gómez M, Sandalio LM, Corpas FJ, Del Río LA, Palma JM (2004) Reactive oxygen species-mediated enzymatic systems involved in the oxidative action of 2,4-dichlorophenoxyacetic acid. Plant Cell Environ 27:1135–1148

    Article  CAS  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  Google Scholar 

  • Untiedt R, Blanke M (2001) Effects of fruit thinning agents on apple tree canopy photosynthesis and dark respiration. Plant Growth Regul 35:1–9

    Article  CAS  Google Scholar 

  • Van Doorn WG, Stead AD (1997) Abscission of flowers and floral parts. J Exp Bot 48:821–837

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ángeles Calatayud from IVIA (Moncada, Spain) for technical assistance, Dr. Debra Westall (Universitat Politècnica de València, Spain) for editing the manuscript, and Mr. Vicent Martínez for technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Mesejo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mesejo, C., Rosito, S., Reig, C. et al. Synthetic Auxin 3,5,6-TPA Provokes Citrus clementina (Hort. ex Tan) Fruitlet Abscission by Reducing Photosynthate Availability. J Plant Growth Regul 31, 186–194 (2012). https://doi.org/10.1007/s00344-011-9230-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-011-9230-z

Keywords

Navigation