Skip to main content
Log in

Microarray-based Analysis of Tomato miRNA Regulated by Botrytis cinerea

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Botrytis cinerea Pers.:Fr. is an important pathogen in tomato plants that causes stem rot of tomatoes grown indoors for an extended period. MicroRNAs (miRNAs) have recently been reported as a class of gene expression regulators linked to stress responses; however, data on the role of miRNAs in plant responses to biotic stresses are still limited. In this study, three Botrytis stress-responsive miRNAs were identified using microarray analysis and the effects of Botrytis infection were surveyed in tomatoes. Two downregulated miRNAs and one upregulated miRNA were detected. These stress-responsive miRNAs regulated metabolic, morphological, and physiological adaptations of tomato seedlings at the post-transcriptional level. The presence of stress-related elements in the miRNA promoter regions further supports our results. These findings extend the current view about miRNAs as ubiquitous regulators under stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aghaei K, Ehsanpour AA, Shah AH, Komatsu S (2009) Proteome analysis of soybean hypocotyl and root under salt stress. Amino Acids 36:91–98

    Article  PubMed  CAS  Google Scholar 

  • Asselbergh B, Curvers K, Frana S, Audenaert K, Vuylsteke M, Van Breusegem F, Höfte M (2007) Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol 144:1863–1877

    Article  PubMed  CAS  Google Scholar 

  • Audenaert K, De Meyer GB, Höfte MM (2002) Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol 128:491–501

    Article  PubMed  CAS  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:13–18

    Article  Google Scholar 

  • Boller T (1991) Ethylene in pathogenesis and disease resistance. In: Mattoo AK, Suttle JC (eds) The plant hormone ethylene. CRC Press, Boca Raton, pp 293–314

    Google Scholar 

  • Bonnet E, Wuyts J, Rouzé P, Van de Peer Y (2004) Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA 101:11511–11516

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed  Google Scholar 

  • Choquer M, Fournier E, Kunz C, Levis C, Pradier JM, Simon A, Viaud M (2007) Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol Lett 277:1–10

    Article  PubMed  CAS  Google Scholar 

  • Chuck G, Cigan AM, Saeteurn K, Hake S (2007a) The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet 39:544–549

    Article  PubMed  CAS  Google Scholar 

  • Chuck G, Meeley R, Irish E, Sakai H, Hake S (2007b) The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat Genet 39:1517–1521

    Article  PubMed  CAS  Google Scholar 

  • Covarrubias A, Reyes J (2010) Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs. Plant Cell Environ 33:481–489

    Article  PubMed  CAS  Google Scholar 

  • Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103:29–38

    Article  PubMed  CAS  Google Scholar 

  • Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences targets and gene nomenclature. Nucleic Acids Res 34:D140–D144

    Article  PubMed  CAS  Google Scholar 

  • Hara K, Yagi M, Kusano T, Sano H (2000) Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor on wounding. Mol Gen Genet 263:30–37

    Article  PubMed  CAS  Google Scholar 

  • Höcker M, Rosenberg I, Xavier R, Henihan RJ, Wiedenmann B, Rosewicz S, Podolsky DK, Wang TC (1998) Oxidative stress activates the human histidine decarboxylase promoter in AGS gastric cancer cells. J Biol Chem 273:23046–23054

    Article  PubMed  Google Scholar 

  • Jagadeeswaran G, Saini A, Sunkar R (2009) Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 229:1009–1014

    Article  PubMed  CAS  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Article  PubMed  CAS  Google Scholar 

  • Ji XM, Raveendran M, Oane R, Ismail A, Lafitte R, Bruskiewich R, Cheng SH, Bennett J (2005) Tissue-specific expression and drought responsiveness of cell-wall invertase genes of rice at flowering. Plant Mol Biol 59(6):945–964

    Article  PubMed  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets including a stressinduced miRNA. Mol Cell 14:787–799

    Article  PubMed  CAS  Google Scholar 

  • Kagan-Zur V, Tieman DM, Marlow SJ, Handa AK (1995) Differential regulation of polygalacturonase and pectin methylesterase gene expression during and after heat stress in ripening tomato (Lycopersicon esculentum Mill.) fruits. Plant Mol Biol 29:1101–1110

    Article  PubMed  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  PubMed  CAS  Google Scholar 

  • Krasikov V, Dekker HL, Rep M, Takken F (2011) The tomato xylem sap protein XSP10 is required for full susceptibility to Fusarium wilt disease. J Exp Bot 62:963–973

    Article  PubMed  CAS  Google Scholar 

  • Kuzniak E, Skøodowska M (2004) The effect of Botrytis cinerea infection on the antioxidant profile of mitochondria from tomato leaves. J Exp Bot 397:605–612

    Article  Google Scholar 

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  PubMed  CAS  Google Scholar 

  • Li AL, Meng CS, Zhou RH, Ma ZY, Jia JZ (2006) Assessment of lipid transfer protein (LTP1) gene in wheat powdery mildew resistance. Agric Sci China 5(4):101–105

    CAS  Google Scholar 

  • Li Y, Fu Y, Ji L, Wu C, Zheng C (2010) Characterization and expression analysis of the Arabidopsis mir169 family. Plant Sci 178:271–280

    Article  CAS  Google Scholar 

  • Liu J, Rivas FV, Wohlschlegel J, Yates JR III, Parker R, Hannon GJ (2005) A role for the P-body component GW182 in microRNA function. Nat Cell Biol 7:1261–1266

    PubMed  Google Scholar 

  • Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Shono M (1999) Characterization of mitochondria-located small heat shock protein from tomato (Lycopersicon esculentum). Plant Cell Physiol 40(12):1297–1304

    Google Scholar 

  • Maity SN, de Crombrugghe B (1998) Role of the CCAAT-binding protein CBF/NF-Y in transcription. Trends Biochem Sci 23:174–178

    Article  PubMed  CAS  Google Scholar 

  • Mantovani R (1999) The molecular biology of the CCAAT-binding factor NF-Y. Gene 239:15–27

    Article  PubMed  CAS  Google Scholar 

  • Millar AA, Gubler F (2005) The Arabidopsis GAMYB-like genes MYB33 and MYB65 are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17:705–721

    Article  PubMed  CAS  Google Scholar 

  • Mita S, Nagai Y, Asai T (2006) Isolation of cDNA clones corresponding to genes differentially expressed in pericarp of mume (Prunus mume) in response to ripening, ethylene and wounding signals. Physiol Plant 128:531–545

    Article  CAS  Google Scholar 

  • Moxon S, Jing R, Szittya G, Schwach F, Rusholme Pilcher RL, Moulton V, Dalmay T (2008) Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 18:1602–1609

    Article  PubMed  CAS  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  PubMed  CAS  Google Scholar 

  • Oakley RV, Wang YS, Ramakrishna W, Harding SA, Tsai CJ (2007) Differential expansion and expression of α- and β-tubulin gene families in populus. Plant Physiol 145:961–973

    Article  PubMed  CAS  Google Scholar 

  • O’Neill TM, Shtienberg D, Elad Y (1997) Effect of some host and microclimate factors on infection of tomato stems by Botrytis cinerea. Plant Dis 81:36–40

    Article  Google Scholar 

  • Peng G, Sutton JC, Li DW (1996) Sites of infection in tomato stems by Botrytis cinerea. Can J Plant Pathol 18:97

    Google Scholar 

  • Phillips JR, Dalmay T, Bartels D (2007) The role of small RNAs in abiotic stress. FEBS Lett 581:3592–3597

    Article  PubMed  CAS  Google Scholar 

  • Raventós D, Jensen AB, Rask MB, Casacuberta JM, Mundy J, San Segundo B (1995) A 20-bp cis-acting element is both necessary and sufficient to mediate elicitor response of a maize PRms gene. Plant J 7:147–156

    Article  PubMed  Google Scholar 

  • Romeis T, Piedras R, Zhang S, Klessig DF, Hirt H, Jones JDG (1999) Rapid Avr9- and Cf9-dependent activation of MAP kinases in tobacco cell cultures and leaves: Convergence of resistance gene elicitor wound and salicylate responses. Plant Cell 11:273–287

    Article  PubMed  CAS  Google Scholar 

  • Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE (1996) Interaction of elicitor-induced DNA binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15:5690–5700

    PubMed  CAS  Google Scholar 

  • Schmidt S, Baldwin IT (2006) Systemin in Solanum nigrum. The tomato-homologous polypeptide does not mediate direct defense responses. Plant Physiol 142:1751–1758

    Article  PubMed  CAS  Google Scholar 

  • Shiu OY, Oetiker JH, Yip WK, Yang SH (1998) The promoter of LE-ACS7, an early flooding-induced 1-aminocyclopropane-1-carboxylate synthase gene of the tomato, is tagged by a Sol3 transposon. Proc Natl Acad Sci USA 95:10334–10339

    Article  PubMed  CAS  Google Scholar 

  • Sun AQ, Yang JY, Yi SY, Zhao CM, Liu J (2006) Cloning and molecular characteristic of the metalloprotease gene LeftsH6 from tomato. J Plant Physiol Mol Biol 32:64–72

    CAS  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down-regulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  PubMed  CAS  Google Scholar 

  • Van Kan JAL (2006) Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11:247–253

    Article  PubMed  Google Scholar 

  • Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12

    Article  PubMed  Google Scholar 

  • Verhoeff K (1967) Studies on Botrytis cinerea in tomatoes influence of methods of deleafing on the occurrence of stem lesions. Neth J Plant Pathol 73:117–120

    Article  Google Scholar 

  • Wang Z, Yang P, Fan B, Chen Z (1998) An oligo selection procedure for identification of sequence-specific DNA-binding activities associated with plant defense. Plant J 16:515–522

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Zhang Z, Zhang Z, Wang XC, Huang R (2008) Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol 148:1953–1963

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Wu J, Sun H, Zhang D, Yu D (2011) Sequence and expression divergence of the AOC gene family in soybean: insights into functional diversity for stress responses. Biotechnol Lett. doi:10.1007/s10529-011-0585-9

  • Xu C, Huang B (2008) Root proteomic responses to heat stress in two Agrostis grass species contrasting in heat tolerance. J Exp Bot 59:4183–4194

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Ruan J, Ho TH, You Y, Yu T, Quatrano RS (2005) Cis-regulatory element based targeted gene finding: Genome-wide identification of abscisic acid- and abiotic stress-responsive genes in Arabidopsis thaliana. Bioinformatics 21:3074–3081

    Article  PubMed  CAS  Google Scholar 

  • Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590

    Article  PubMed  CAS  Google Scholar 

  • Zhao B, Ge L, Liang R, Li W, Ruan K, Lin H, Jin Y (2009) Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol Biol 10:29

    Article  PubMed  Google Scholar 

  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61:1959–1968

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Province Natural Science Foundation of Shaanxi (grant No. SJ082ZT04), the Natural Science Foundation of China (grant No. 31000913), the Doctoral Fund of Ministry of Education of China (grant No. 20100204120024), and the Foundation of Young Aged Academic Backbone of the Northwest A&F University in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weibo Jin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, W., Wu, F., Xiao, L. et al. Microarray-based Analysis of Tomato miRNA Regulated by Botrytis cinerea . J Plant Growth Regul 31, 38–46 (2012). https://doi.org/10.1007/s00344-011-9217-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-011-9217-9

Keywords

Navigation