Skip to main content
Log in

Molecular Cloning and Characterization of a Guanylyl Cyclase, PnGC-1, Involved in Light Signaling in Pharbitis nil

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Guanylyl cyclases (GCs) are enzymes involved in the biosynthesis of cyclic guanosine monophosphate (cGMP). Here we report the cloning and characterization of a new guanylyl cyclase, designated PnGC-1, from Pharbitis nil. This gene encodes a protein of 286 amino acids, with a calculated molecular mass of 32 kDa. The predicted amino acid sequence contains all typical features and shows high identity with known plant GCs. The GST-PnGC-1 was catalytically active in E. coli cells and the purified, recombinant PnGC-1 was able to convert GTP to cGMP in the presence of Mn2+. Moreover, the enzyme activity was strongly inhibited by a specific sGC inhibitor, NS2028, whereas in the case of nitric oxide, an animal sGC stimulator, no positive effect was observed. Besides the identification of the PnGC-1 as a guanylyl cyclase, it was shown that a transcript of PnGC-1 was present in every tested organ of the light- or dark-grown plants; however, the highest expression level was found in dark-treated plants. The PnGC-1 mRNA level in the cotyledons exhibited diurnal oscillations under short-day conditions (8/16-h photoperiod). Meanwhile, monitoring of transcript levels in cotyledons exposed to a special photoperiodic regime (24 h light of low intensity then 24 h long night with or without far-red light before the night) revealed that a stabile phytochrome is involved in this process. These data unequivocally identify the product of the PnGC-1 gene as a guanylyl cyclase and emphasize the potential that soluble GC can be an element of light signal transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Behrends S, Harteneck C, Schultz G, Koesling D (1995) A variant of the alpha 2 subunit of soluble guanylyl cyclase contains an insert homologous to a region within adenylyl cyclase and function as a dominant negative protein. J Biol Chem 270:21109–21113

    Article  PubMed  CAS  Google Scholar 

  • Bloch KD, Filippov G, Sanchez LS, Nakane M, de la Monte SM (1997) Pulmonary soluble guanylate cyclase, a nitric oxide receptor, is increased during the perinatal period. Am J Physiol 272:400–406

    Google Scholar 

  • Boon EM, Marletta MA (2005) Ligand discrimination in soluble guanylate cyclases and the H-NOX family of heme sensor proteins. Curr Opin Chem Biol 9:441–446

    Article  PubMed  CAS  Google Scholar 

  • Boon EM, Huang SH, Marletta MA (2005) A molecular basis for NO selectivity in soluble guanylate cyclases. Nat Chem Biol 1:53–59

    Article  PubMed  CAS  Google Scholar 

  • Bossen ME, Kendrick RE, Vredenberg WJ (1990) The involvement of a G-protein in phytochrome-regulated, Ca2+-dependent swelling of etiolated wheat protoplast. Physiol Plant 80:55–62

    Article  CAS  Google Scholar 

  • Bowler C, Neuhaus G, Yamagata H, Chua NH (1994) Cyclic GMP and calcium mediate phytochrome transduction. Cell 77:73–81

    Article  PubMed  CAS  Google Scholar 

  • Brown EG, Newton RP, Evans DE, Walton TJ, Younis LM, Vaughan JM (1989) Influence of light on cyclic nucleotide metabolism in plants: effect of dibutyryl cyclic nucleotides on chloroplast components. Phytochemistry 28:2559–2563

    Article  CAS  Google Scholar 

  • Cousson A (2001) Pharmacological evidence for the implication of both cyclic GMP-dependent and -independent transduction pathways within auxin-induced stomatal opening in Commelina communis (L.). Plant Sci 161:249–258

    Article  PubMed  CAS  Google Scholar 

  • DeVries JS, Andriotis VM, Wu AJ, Rathjen JP (2006) Tomato Pto encodes a functional N-myristoylation motif that is required for signal transduction in Nicotiana benthamiana. Plant J 45:31–45

    Article  CAS  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defence gene identification in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA 95:10328–10333

    Article  PubMed  CAS  Google Scholar 

  • Farazi TA, Waksman G, Gordon JI (2001) The biology and enzymology of protein N-myristoylation. J Biol Chem 276:39501–39504

    Article  PubMed  CAS  Google Scholar 

  • Furuya M, Schäfer EB (1996) Photoperception and signalling of induction reactions by different phytochromes. Trends Plant Sci 1:301–307

    Google Scholar 

  • Hasunuma K (1998) Molecular aspects of light signal transduction, circadian rhythm and flowering in plants. Rec Res Dev Photochem Photobiol 2:47–52

    CAS  Google Scholar 

  • Hasunuma K, Funadera K, Furukawa K, Miyamoto-Shinoyama Y (1988) Rhythmic oscillation of cyclic 3′,5′-AMP and -GMP concentration and stimulation of flowering by cyclic GMP in Lemna paucicostata 381. Photochem Photobiol 48:89–92

    Article  CAS  Google Scholar 

  • Heide OM, King RW, Evans LT (1986) A semidian rhythm in the flowering response of Pharbitis nil to far-red light. I. Phasing in relation to the light-off signal. Plant Physiol 89:1020–1024

    Article  Google Scholar 

  • Jiang Y, Stojilkovic SS (2006) Molecular cloning and characterization of α1-soluble guanylyl cyclase gene promoter in rat pituitary cells. J Mol Endocrinol 37:503–515

    Article  PubMed  CAS  Google Scholar 

  • Kamisaki Y, Saheki S, Nakane M, Palmieri JP, Kuno T, Chang B-Y, Waldman SA, Murad F (1986) Soluble guanylate cyclase from rat lung exists as a heterodimer. J Biol Chem 261:7236–7241

    PubMed  CAS  Google Scholar 

  • Klöss S, Furneaux H, Mülsch A (2003) Post-transcriptional regulation of soluble guanylyl cyclase expression in rat aorta. J Biol Chem 278:2377–2383

    Article  PubMed  CAS  Google Scholar 

  • Koesling D, Schultz G, Böhme E (1991) Sequence homologies between guanylyl cyclases and structural analogies to other signal-transducing proteins. FEBS Lett 280:301–306

    Article  PubMed  CAS  Google Scholar 

  • Kummer W, Behrends S, Schwarzlmuller T, Fisher A, Koesling D (1996) Subunits of soluble guanylyl cyclase in rat and guinea pig sensory gangle. Brain Res 721:191–195

    Article  PubMed  CAS  Google Scholar 

  • Kwezi L, Meier S, Mungur L, Ruzvidzo O, Irving H, Gehring C (2007) The Arabidopsis thaliana brassinosteroid receptor (AtBRI1) contains a domain that functions as a guanylyl cyclase in vitro. PLoS ONE 2:e449

    Article  PubMed  CAS  Google Scholar 

  • Lawson DM, Stevenson CE, Andrew CR, Eady RR (2000) Unprecedented proximal binding of nitric oxide to heme: implications for guanylate cyclase. EMBO J 19:5661–5671

    Article  PubMed  CAS  Google Scholar 

  • Lucas KA, Pitari GM, Kazerounian S, Ruiz-Steward I, Park J, Schulz S, Chepenik KP, Waldman AS (2002) Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 52:375–414

    Google Scholar 

  • Ludidi N, Gehring C (2003) Identification of a novel protein with guanylyl cyclase activity in Arabidopsis thaliana. J Biol Chem 278:6490–6494

    Article  PubMed  CAS  Google Scholar 

  • Maathuis FJM (2006) cGMP modulates gene transcription and cation transport in Arabidopsis roots. Plant J 45:700–711

    Article  PubMed  CAS  Google Scholar 

  • Maciejewska BD, Kesy J, Zielinska M, Kopcewicz J (2004) Jasmonates inhibit flowering in short-day plant Pharbitis nil. Plant Grow Regul 43:1–8

    Article  CAS  Google Scholar 

  • McCue LA, McDonough KA, Lawrence CE (2000) Functional classification of cNMP-binding proteins and nucleotide cyclases with implications for novel regulatory pathways in Mycobacterium tuberculosis. Genom Res 10:204–219

    Article  CAS  Google Scholar 

  • Mittal CK, Murad F (1977) Formation of adenosine 3′,5′-monophosphate by preparation of guanylate cyclase from rat liver and other tissues. J Biol Chem 252:3136–3140

    PubMed  CAS  Google Scholar 

  • Murad F (1994) Cyclic GMP: synthesis, metabolism and function. In: Murad F (ed) Advances in pharmacology, vol 26. Academic Press, San Diego, CA

    Google Scholar 

  • Newton RF, Kingston EE, Evans DE, Younis LM, Brown EG (1984) Occurrence of guanosine 3′,5′-cyclic monophosphate (cyclic GMP) and associated enzyme systems in Phaseolus vulgaris L. Phytochemistry 23:1367–1372

    Article  CAS  Google Scholar 

  • Newton RP, Smith CJ (2004) Cyclic nucleotides. Phytochemistry 65:2423–2437

    Article  PubMed  CAS  Google Scholar 

  • Newton RP, Roef L, Witters E, Van Onckelen H (1999) Cyclic nucleotides in higher plants: enduring paradox. New Phytol 143:427–455

    Article  CAS  Google Scholar 

  • Penson SP, Schuurink RC, Fath A, Gubler F, Jacobsen JV, Jones RL (1996) cGMP is required for giberellic acid-induced gene expression in barley aleurone. Plant Cell 8:2325–2333

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer S, Janistyn B, Jessner G, Pichorner H, Ebermann R (1994) Gaseous nitric oxide stimulates guanosine-3′,5′-cyclic monophosphate (cGMP) formation in spruce needles. Photochemistry 36:259–262

    Article  CAS  Google Scholar 

  • Schaap P (2005) Guanylyl cyclases across the tree of life. Front Biosci 10:1485–1498

    Article  PubMed  CAS  Google Scholar 

  • Smith H, Whitelam GC (1997) The shade avoidance syndrome—multiple responses mediated by multiple phytochromes. Plant Cell Environ 20:840–844

    Article  Google Scholar 

  • Sokolovsky SG, Yatsevich OV, Volotovsky ID (1996) Implication of universal messenger in phytochrome-mediated control of Ca2+ uptake by protoplasts. Russ J Plant Physiol 43:883–886

    Google Scholar 

  • Sunahara RK, Beuve A, Tesmer JJG, Sprang SR, Garbers DL, Gilman AG (1998) Exchange of substrate and inhibitor specificities between adenylyl and guanylyl cyclases. J Biol Chem 273:16332–16338

    Article  PubMed  CAS  Google Scholar 

  • Szmidt-Jaworska A, Jaworski K, Tretyn A, Kopcewicz J (2004) The involvement of cyclic GMP in the photoperiodic flower induction of Pharbitis nil. J Plant Physiol 161:277–284

    Article  PubMed  CAS  Google Scholar 

  • Szmidt-Jaworska A, Jaworski K, Kopcewicz J (2008a) The involvement of cyclic GMP in phytochrome-controlled flowering of Pharbitis nil. J Plant Physiol 165:858–867

    Article  PubMed  CAS  Google Scholar 

  • Szmidt-Jaworska A, Jaworski K, Kopcewicz J (2008b) Effect of light on soluble guanylyl cyclase activity in Pharbitis nil seedlings. J Photochem Photobiol B Biol 93:9–15

    Article  CAS  Google Scholar 

  • Szmidt-Jaworska A, Jaworski K, Zienkiewicz A, Lenartowska M, Kopcewicz J (2009) Guanylyl cyclase activity during photoperiodic flower induction in Pharbitis nil. Plant Growth Regul 57:173–184

    Article  CAS  Google Scholar 

  • Thomas B (2006) Light signals and flowering. J Exp Bot 57:3387–3393

    Article  PubMed  CAS  Google Scholar 

  • Thorpe DS, Morkin E (1990) The carboxyl region contains the catalytic domain of the membrane form of guanylate cyclase. J Biol Chem 265:14717–14720

    PubMed  CAS  Google Scholar 

  • Tucker CT, Hurley JH, Miller TA, Hyrley JB (1998) Two amino acid substitution convert a guanylyl cyclases, Ret GC-1, into an adenylyl cyclases. Proc Natl Acad Sci USA 95:5993–5997

    Article  PubMed  CAS  Google Scholar 

  • Volotovsky ID, Dubovskaya LV, Molchan OV (2003) Photoreceptor phytochrome regulates the cyclic guanosine 3′,5′-monophosphate synthesis in Avena sativa L. cells. Bull J Plant Physiol 29:3–12

    Google Scholar 

  • Wedel B, Harteneck C, Foerster J, Friebe A, Schultz G, Koesling D (1995) Functional domains of soluble guanylyl cyclase. J Biol Chem 270:24871–24875

    Article  PubMed  CAS  Google Scholar 

  • Winger JA, Marletta MA (2005) Expression and characterization of the catalytic domains of soluble guanylate cyclase: Interaction with the heme domain. Biochemistry 44:4083–4090

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Liakat AM, Taylor J, Liu J, Sun G, Liu W, Masilimany P, Gulati-Sakhuja A, Pauls KP (2008) A guanylyl cyclase-like gene is associated with giberella ear rot resistance in maize (Zea mays L.). Theor Appl Genet 116:465–479

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Ministry of Science and Higher Education (Poland) grant No. N N303 0704 33.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Szmidt-Jaworska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szmidt-Jaworska, A., Jaworski, K., Pawełek, A. et al. Molecular Cloning and Characterization of a Guanylyl Cyclase, PnGC-1, Involved in Light Signaling in Pharbitis nil . J Plant Growth Regul 28, 367–380 (2009). https://doi.org/10.1007/s00344-009-9105-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-009-9105-8

Keywords

Navigation