Skip to main content
Log in

Community structure of aerobic anoxygenic phototrophic bacteria in algae- and macrophyte-dominated areas in Taihu Lake, China

  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Aerobic anoxygenic phototrophic bacteria (AAPB) represent a major group of bacterioplankton assemblages in many water systems and some are assumed to be closely associated with phytoplankton. However, studies on relationships between AAPB and cyanobacterial blooms are in scarcity. The dynamics of the abundance and diversity of AAPB was compared based on pufM gene in Meiliang Bay (featured by cyanobacterial blooms) and East Bay (featured by macrophyte) of Taihu Lake, a shallow subtropical lake in the East China plain. AAPB abundance was not significantly different between the two sites, and they were positively correlated with dissolved organic carbon (DOC) concentration. The ratios of AAPB to total bacteria varied from 3.4% to 11.5% and peaked in winter in both sites. No significant differences of AAPB community compositions were detected between the two sites, but there was a separation between warm seasons (June, August, and October) and cold seasons (December, February, and April). Rhizobiales and Limnohabitans-like pufM sequences were significantly contributors for the difference between two seasons, and specially enriched in cold seasons. Chlorophyll a (Chl a) and DOC were the most significant variables influencing the AAPB community structure. Furthermore, Porphyrobacter and Rhodospirillales-like pufM sequences were positively correlated with Chl a, indicating potential influence of cyanobacterial blooms on these AAPB taxa. These results suggested that diverse AAPB ecotypes coexisted in Taihu Lake, and their ecological role in carbon cycling in the lake may not be ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The data supporting the conclusions are presented in the main article.

References

  • Achenbach L A, Carey J, Madigan M T. 2001. Photosynthetic and phylogenetic primers for detection of anoxygenic phototrophs in natural environments. Applied and Environmental Microbiology, 67(7): 2922–2926.

    Article  Google Scholar 

  • Allgaier M, Uphoff H, Felske A et al. 2003. Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats. Applied and Environmental Microbiology, 69(9): 5051–5059.

    Article  Google Scholar 

  • Asai R, Horiguchi Y, Yoshida A et al. 2001. Detection of phycobilin pigments and their seasonal change in Lake Kasumigaura using a sensitive in situ fluorometric sensor. Analytical Letters, 34(14): 2521–2533.

    Article  Google Scholar 

  • Béjè O, Suzuki M T, Heidelberg J F et al. 2002. Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature, 415(6872): 630–633.

    Article  Google Scholar 

  • Berg K A, Lyra C, Sivonen K et al. 2009. High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. The ISME Journal, 3(3): 314–325.

    Article  Google Scholar 

  • Boeuf D, Cottrell M T, Kirchman D L et al. 2013. Summer community structure of aerobic anoxygenic phototrophic bacteria in the western Arctic Ocean. FEMS Microbiology Ecology, 85(3): 417–432.

    Article  Google Scholar 

  • Brient L, Lengronne M, Bertrand E et al. 2008. A phycocyanin probe as a tool for monitoring cyanobacteria in freshwater bodies. Journal of Environmental Monitoring, 10(2): 248–255.

    Article  Google Scholar 

  • Cai H Y, Jiang H L, Krumholz L R et al. 2014. Bacterial community composition of size-fractioned aggregates within the phycosphere of cyanobacterial blooms in a eutrophic freshwater lake. PLoS One, 9(8): e102879.

    Article  Google Scholar 

  • Caliz J, Casamayor E O. 2014. Environmental controls and composition of anoxygenic photoheterotrophs in ultraoligotrophic high-altitude lakes (central Pyrenees). Environmental Microbiology Reports, 6(2): 145–151.

    Article  Google Scholar 

  • Cepáková Z, Hrouzek P, Žišková E et al. 2016. High turnover rates of aerobic anoxygenic phototrophs in European freshwater lakes. Environmental Microbiology, 18(12): 5063–5071.

    Article  Google Scholar 

  • Chen Y W, Qin B Q, Teubner K et al. 2003. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. Journal of Plankton Research, 25(4): 445–453.

    Article  Google Scholar 

  • Chen Y, Zhang Y, Jiao N Z. 2011. Responses of aerobic anoxygenic phototrophic bacteria to algal blooms in the East China Sea. Hydrobiologia, 661(1): 435–443.

    Article  Google Scholar 

  • Cole J R, Chai B, Marsh T L et al. 2003. The ribosomal database project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Research, 31(1): 442–443.

    Article  Google Scholar 

  • Čuperová Z, Holzer E, Salka I et al. 2013. Temporal changes and altitudinal distribution of aerobic anoxygenic phototrophs in mountain lakes. Appliedand Environmental Microbiology, 79(20): 6439–6446.

    Article  Google Scholar 

  • Du H L, Jiao N Z, Hu Y H et al. 2006. Real-time PCR for quantification of aerobic anoxygenic phototrophic bacteria based on pufM gene in marine environment. Journal of Experimental Marine Biology and Ecology, 329(1): 113–121.

    Article  Google Scholar 

  • Fauteux L, Cottrell M T, Kirchman D L et al. 2015. Patterns in abundance, cell size and pigment content of aerobic anoxygenic phototrophic bacteria along environmental gradients in northern lakes. PLoS One, 10(4): e0124035.

    Article  Google Scholar 

  • Ferrera I, Borrego C M, Salazar G et al. 2014. Marked seasonality of aerobic anoxygenic phototrophic bacteria in the coastal NW Mediterranean Sea as revealed by cell abundance, pigment concentration and pyrosequencing of pufM gene. Environmental Microbiology, 16(9): 2953–2965.

    Article  Google Scholar 

  • Ferrera I, Sánchez O, Kolářová E et al. 2017a. Light enhances the growth rates of natural populations of aerobic anoxygenic phototrophic bacteria. The ISME Journal, 11(10): 2391–2393.

    Article  Google Scholar 

  • Ferrera I, Sarmento H, Priscu J C et al. 2017b. Diversity and distribution of freshwater aerobic anoxygenic phototrophic bacteria across a wide latitudinal gradient. Frontiers in Microbiology, 8: 175.

    Article  Google Scholar 

  • Fleischman D, Kramer D. 1998. Photosynthetic rhizobia. Biochimica et Biophysica Acta (BBA) — Bioenergetics, 1364(1): 17–36.

    Article  Google Scholar 

  • Giraud E, Fleischman D. 2004. Nitrogen-fixing symbiosis between photosynthetic bacteria and legumes. Photosynthesis Research, 82(2): 115–130.

    Article  Google Scholar 

  • Goecke F, Thiel V, Wiese J et al. 2013. Algae as an important environment for bacteria-phylogenetic relationships among new bacterial species isolated from algae. Phycologia, 52(1): 14–24.

    Article  Google Scholar 

  • Graham E D, Heidelberg J F, Tully B J. 2018. Potential for primary productivity in a globally-distributed bacterial phototroph. The ISME Journal, 12(7): 1861–1866

    Article  Google Scholar 

  • Green D H, Llewellyn L E, Negri A P et al. 2004. Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum. FEMS Microbiology Ecology, 47(3): 345–357.

    Article  Google Scholar 

  • Hu Y H, Du H L, Jiao N Z et al. 2006. Abundant presence of the γ-like proteobacterial pufM gene in oxic seawater. FEMS Microbiology Letters, 263(2): 200–206.

    Article  Google Scholar 

  • Imhoff J F, Rahn T, Künzel S et al. 2018. Photosynthesis is widely distributed among Proteobacteria as demonstrated by the phylogeny of pufLM reaction center proteins. Frontiers in Microbiology, 8: 2679.

    Article  Google Scholar 

  • Jeanthon C, Boeuf D, Dahan O et al. 2011. Diversity of cultivated and metabolically active aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea. Biogeosciences, 8(7): 1955–1970.

    Article  Google Scholar 

  • Jia T X, Zhang X Q, Dong R C. 2019. Long-term spatial and temporal monitoring of cyanobacteria blooms using MODIS on Google earth engine: a case study in Taihu Lake. Remote Sensing, 11(19): 2269.

    Article  Google Scholar 

  • Jiang H C, Deng S C, Huang Q Y et al. 2010. Response of aerobic anoxygenic phototrophic bacterial diversity to environment conditions in saline lakes and Daotang River on the Tibetan Plateau, NW China. Geomicrobiology Journal, 27(5): 400–408.

    Article  Google Scholar 

  • Jiang H C, Dong H L, Yu B S et al. 2009. Abundance and diversity of aerobic anoxygenic phototrophic bacteria in saline lakes on the Tibetan Plateau. FEMS Microbiology Ecology, 67(2): 268–278.

    Article  Google Scholar 

  • Jiao N Z, Herndl G J, Hansell D A et al. 2010. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nature Reviews Microbiology, 8(8): 593–599.

    Article  Google Scholar 

  • Jiao N Z, Zhang Y, Zeng Y H et al. 2007. Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environmental Microbiology, 9(12): 3091–3099.

    Article  Google Scholar 

  • Kasalický V, Zeng Y H, Piwosz K et al. 2018. Aerobic anoxygenic photosynthesis is commonly present within the genus Limnohabitans. Applied and Environmental Microbiology, 84(1): e02116–17.

    Article  Google Scholar 

  • Kobližek M, Falkowski P G, Kolber Z S. 2006. Diversity and distribution of photosynthetic bacteria in the Black Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 53(17–19): 1934–1944.

    Article  Google Scholar 

  • Koblížek M, Mašín M, Ras J et al. 2007. Rapid growth rates of aerobic anoxygenic phototrophs in the ocean. Environmental Microbiology, 9(10): 2401–2406.

    Article  Google Scholar 

  • Koblížek M. 2015. Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiology Reviews, 39(6): 854–870.

    Article  Google Scholar 

  • Kolářová E, Medová H, Piwosz K et al. 2019. Seasonal dynamics of aerobic anoxygenic phototrophs in freshwater lake Vlkov. Folia Microbiologica, 64(5): 705–710.

    Article  Google Scholar 

  • Kolber Z S, Plumley F G, Lang A S et al. 2001. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science, 292(5526): 2492–2495.

    Article  Google Scholar 

  • Lehours A C, Cottrell M T, Dahan O et al. 2010. Summer distribution and diversity of aerobic anoxygenic phototrophic bacteria in the Mediterranean Sea in relation to environmental variables. FEMS Microbiology Ecology, 74(2): 397–409.

    Article  Google Scholar 

  • Letunic I, Bork P. 2007. Interactive tree of life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics, 23(1): 127–128.

    Article  Google Scholar 

  • Li Q, Song A, Peng W J et al. 2017. Contribution of aerobic anoxygenic phototrophic bacteria to total organic carbon pool in aquatic system of subtropical karst catchments, Southwest China: evidence from hydrochemical and microbiological study. FEMS Microbiology Ecology, 93(6): fix065.

    Article  Google Scholar 

  • Ma J R, Qin B Q, Paerl H W et al. 2016. The persistence of cyanobacterial (Microcystis spp.) blooms throughout winter in Lake Taihu, China. Limnology and Oceanography, 61(2): 711–722.

    Article  Google Scholar 

  • Mašín M, Čuperová Z, Hojerová E et al. 2012. Distribution of aerobic anoxygenic phototrophic bacteria in glacial lakes of northern Europe. Aquatic Microbial Ecology, 66(1): 77–86.

    Article  Google Scholar 

  • Masin M, Nedoma J, Pechar L et al. 2008. Distribution of aerobic anoxygenic phototrophs in temperate freshwater systems. Environmental Microbiology, 10(8): 1988–1996.

    Article  Google Scholar 

  • Nadkarni M A, Martin F E, Jacques N A et al. 2002. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology, 148(1): 257–266.

    Article  Google Scholar 

  • Oksanen J, Blanchet F G, Kindt R et al. 2013. Vegan: Community Ecology Package. R version 2. https://cran.r-project.org/web/packages/vegan/index.html.

  • Paerl H W, Paul V J. 2012. Climate change: links to global expansion of harmful cyanobacteria. Water Research, 46(5): 1349–1363.

    Article  Google Scholar 

  • Piwosz K, Vrdoljak A, Frenken T et al. 2020. Light and primary production shape bacterial activity and community composition of aerobic anoxygenic phototrophic bacteria in a microcosm experiment. mSphere, 5(4): e00354–20.

    Google Scholar 

  • Qin B Q, Xu P Z, Wu Q L et al. 2007. Environmental issues of Lake Taihu, China. Hydrobiologia, 581(1): 3–14.

    Article  Google Scholar 

  • Ritchie A E, Johnson Z I. 2012. Abundance and genetic diversity of aerobic anoxygenic phototrophic bacteria of coastal regions of the Pacific Ocean. Applied and Environmental Microbiology, 78(8): 2858–2866.

    Article  Google Scholar 

  • Robinson M D, McCarthy D J, Smyth G K. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1): 139–140.

    Article  Google Scholar 

  • Ruiz-González C, Garcia-Chaves M C, Ferrera I et al. 2020. Taxonomic differences shape the responses of freshwater aerobic anoxygenic phototrophic bacterial communities to light and predation. Molecular Ecology, 29(7): 1267–1283.

    Article  Google Scholar 

  • Salka I, Čuperova Z, Mašín M et al. 2011. Rhodoferax-related pufM gene cluster dominates the aerobic anoxygenic phototrophic communities in German freshwater lakes. Environmental Microbiology, 13(11): 2865–2875.

    Article  Google Scholar 

  • Sato-Takabe Y, Hamasaki K, Suzuki S. 2019. High temperature accelerates growth of aerobic anoxygenic phototrophic bacteria in seawater. Microbiologyopen, 8(5): e00710.

    Article  Google Scholar 

  • Sato-Takabe Y, Hirose S, Hori T et al. 2020. Abundance and spatial distribution of aerobic anoxygenic phototrophic bacteria in Tama River, Japan. Water, 12(1): 150.

    Article  Google Scholar 

  • Schloss P D, Westcott S L, Ryabin T et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23): 7537–7541.

    Article  Google Scholar 

  • Shi L M, Cai Y F, Chen Z T et al. 2010. Diversity and abundance of aerobic anoxygenic phototrophic bacteria in two cyanobacterial bloom-forming lakes in China. Annales de Limnologie — International Journal of Limnology, 46(4): 233–239.

    Article  Google Scholar 

  • Shi L M, Cai Y F, Li P F et al. 2009a. Molecular identification of the colony-associated cultivable bacteria of the cyanobacterium Microcystis aeruginosa and their effects on algal growth. Journal of Freshwater Ecology, 24(2): 211–218.

    Article  Google Scholar 

  • Shi L M, Cai Y F, Yang H L et al. 2009b. Phylogenetic diversity and specificity of bacteria associated with Microcystis aeruginosa and other cyanobacteria. Journal of Environmental Sciences, 21(11): 1581–1590.

    Article  Google Scholar 

  • Tian Y Y, Wu X Q, Zhou Q C et al. 2018. Distribution of aerobic anoxygenic phototrophs in freshwater plateau lakes. Polish Journal of Environmental Studies, 27(2): 871–879.

    Article  Google Scholar 

  • Tillett D, Neilan B A. 2000. Xanthogenate nucleic acid isolation from cultured and environmental cyanobacteria. Journal of Phycology, 36(1): 251–258.

    Article  Google Scholar 

  • Waidner L A, Kirchman D L. 2005. Aerobic anoxygenic photosynthesis genes and operons in uncultured bacteria in the Delaware River. Environmental Microbiology, 7(12): 1896–1908.

    Article  Google Scholar 

  • Waidner L A, Kirchman D L. 2008. Diversity and distribution of ecotypes of the aerobic anoxygenic phototrophy gene pufM in the Delaware estuary. Applied and Environmental Microbiology, 74(13): 4012–4021.

    Article  Google Scholar 

  • Xu H, Paerl H W, Zhu G W et al. 2017. Long-term nutrient trends and harmful cyanobacterial bloom potential in hypertrophic Lake Taihu, China. Hydrobiologia, 787(1): 229–242.

    Article  Google Scholar 

  • Yurkov V V, Beatty J T. 1998. Aerobic anoxygenic phototrophic bacteria. Microbiology and Molecular Biology Reviews, 62(3): 695–724.

    Article  Google Scholar 

  • Zeng Y H, Chen X H, Jiao N Z. 2007. Genetic diversity assessment of anoxygenic photosynthetic bacteria by distance-based grouping analysis of pufM sequences. Letters in Applied Microbiology, 45(6): 639–645.

    Article  Google Scholar 

  • Zeng Y H, Kasalicky V, Simek K et al. 2012. Genome sequences of two freshwater Betaproteobacterial isolates, Limnohabitans species strains Rim28 and Rim47, indicate their capabilities as both photoautotrophs and ammonia oxidizers. Journal of Bacteriology, 194(22): 6302–6303.

    Article  Google Scholar 

  • Zhang H H, Wang Y, Huang T L et al. 2020. Mixed-culture aerobic anoxygenic photosynthetic bacterial consortia reduce nitrate: core species dynamics, co-interactions and assessment in raw water of reservoirs. Bioresource Technology, 315: 123817.

    Article  Google Scholar 

  • Zhang Y C, Ma R H, Liang Q C et al. 2019. Secondary impacts of eutrophication control activities in shallow lakes: lessons from aquatic macrophyte dynamics in Lake Taihu from 2000 to 2015. Freshwater Science, 38(4): 802–817.

    Article  Google Scholar 

  • Zhang Y L, Liu X H, Qin B Q et al. 2016. Aquatic vegetation in response to increased eutrophication and degraded light climate in eastern Lake Taihu: implications for lake ecological restoration. Scientific Reports, 6: 23867.

    Article  Google Scholar 

  • Zhang Y, Jiao N Z. 2007. Dynamics of aerobic anoxygenic phototrophic bacteria in the East China Sea. FEMS MicrobiologyEcology, 61(3): 459–469.

    Article  Google Scholar 

  • Zhu C M, Zhang J Y, Wang X et al. 2021. Responses of cyanobacterial aggregate microbial communities to algal blooms. Water Research, 196: 117014.

    Article  Google Scholar 

Download references

Acknowledgment

We are grateful to Mingyong DU, Shiming LIU, Mingbo SUN, and Yinping WANG from Nanjing Institute of Geography and Limnology for their assistances on sample collection, and Mengyu QIAN for determination of concentration of chlorophyll a and phycocyanin. Of the authors, Limei SHI conducted the experiments and drafted the manuscript, Yuanfeng CAI performed data analyses. Xiaoli SHI and Min ZHANG reviewed and edited the manuscript. Qingfei ZENG helped in sample collection. Fanxiang KONG designed the study. Ping XU revised the English language. All authors have read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Limei Shi or Min Zhang.

Additional information

Supported by the National Natural Science Foundation of China (Nos. 31971449, 31370509, 31100363), the CAS-SAFEA International Partnership Program for Creative Research Teams (CN) (No. KZZD-EW-TZ-08), and the startup funds from Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (No. NIGLAS2011QD05)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Cai, Y., Shi, X. et al. Community structure of aerobic anoxygenic phototrophic bacteria in algae- and macrophyte-dominated areas in Taihu Lake, China. J. Ocean. Limnol. 40, 1855–1867 (2022). https://doi.org/10.1007/s00343-022-1348-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-022-1348-2

Keyword

Navigation