Skip to main content
Log in

Three-dimensional mesoscale eddy identification and tracking algorithm based on pressure anomalies

  • Physics
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The Kuroshio Extension (KE) is one of the most eddy-energetic regions in the global ocean. However, most mesoscale eddy studies in the region are focused on surface eddies and the structure and characteristics of three-dimensional (3-D) eddies require additional research. In this study, we proposed a 3-D eddy identification and tracking algorithm based on pressure anomalies, similar to sea level anomalies (SLAs) for surface eddy identification. We applied this scheme to a 5-year (2008–2012) high-resolution numerical product to develop a 3-D eddy dataset in the KE. The reliability of the numerical product was verified by the 5-year temperature/salinity hydrological characteristics and surface eddy distribution. According to the 3-D eddy tracking dataset, the number of eddies decreased dramatically as the eddy existence-time increased and more anticyclonic eddies (AEs) had an existence-time longer than 1 week than cyclonic eddies (CEs). We presented daily variations in the 3-D structure of two 3-D eddy-tracking trajectories that exhibit a certain jump in depth and a shift toward the west and equator. In addition to the bowl, lens, and cone eddies that have been discovered by previous researchers, we found that there is a cylindrical eddy, and its eddy radii are almost consistent across all layers. CEs cause significant negative temperature anomalies, “negative-positive” salinity anomalies, and sinking current fields in the KE region, while AEs cause positive temperature anomalies, “positive-negative” salinity anomalies, and upward current fields. The four types of eddies have different effects on the temperature/salinity anomalies and current field distribution which are related to their structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The HYCOM data and the altimeter data can be obtained freely from http://ncss.hycom.org/thredds/catalogs/GLBu0.08/expt_19.1.html and http://marine.copernicus.eu/, respectively. The datasets generated and analyzed in the current study are not publicly available because they are the property of the project but are available from the corresponding author on reasonable request.

References

  • Chaigneau A, Gizolme A, Grados C. 2008. Mesoscale eddies off Peru in altimeter records: identification algorithms and eddy spatio-temporal patterns. Progress in Oceanography, 79(2–4): 106–119.

    Article  Google Scholar 

  • Chelton D B, Schlax M G, Samelson R M, de Szoeke R A. 2007. Global observations of large oceanic eddies. Geophysical Research Letters, 34(15): L15606.

    Article  Google Scholar 

  • Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216.

    Article  Google Scholar 

  • Chu P C, Fan C W. 2001. Low salinity, cool-core cyclonic eddy detected northwest of Luzon during the South China Sea Monsoon Experiment (SCSMEX) in July 1998. Journal of Oceanography, 57(5): 549–563.

    Article  Google Scholar 

  • Cummings J A, Smedstad O M. 2013. Variational data assimilation for the global ocean. In: Park S K, Xu L eds. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin, Heidelberg.

    Google Scholar 

  • Cummings J A. 2005. Operational multivariate ocean data assimilation. Quarterly Journal of the Royal Meteorological Society, 131(613): 3 583–3 604.

    Article  Google Scholar 

  • Doglioli A M, Blanke B, Speich S, Lapeyre G. 2007. Tracking coherent structures in a regional ocean model with wavelet analysis: application to cape basin eddies. Journal of Geophysical Research: Oceans, 112(C): C05043.

    Google Scholar 

  • Dong C M, Lin X Y, Liu Y, Nencioli F, Chao Y, Guan Y P, Chen D, Dickey T, McWilliams J C. 2012. Three-dimensional oceanic eddy analysis in the Southern California Bight from a numerical product. Journal of Geophysical Research: Oceans, 117(C7): C00H14.

    Article  Google Scholar 

  • Dong C M, Mavor T, Nencioli F, Jiang S N, Uchiyama Y, McWilliams J C, Dickey T, Ondrusek M, Zhang H C, Clark D K. 2009. An oceanic cyclonic eddy on the lee side of Lanai Island, Hawaii. Journal of Geophysical Research: Oceans, 114(C10): C10008.

    Article  Google Scholar 

  • Dong C M, McWilliams J C, Liu Y, Chen D. 2014. Global heat and salt transports by eddy movement. Nature Communications, 5: 3294.

    Article  Google Scholar 

  • Dong D, Brandt P, Chang P, Schütte F, Yang X F, Yan J H, Zeng J S. 2017. Mesoscale eddies in the northwestern Pacific Ocean: three-dimensional eddy structures and heat/salt transports. Journal of Geophysical Research: Oceans, 122(12): 9 795–9 813.

    Article  Google Scholar 

  • Ebuchi N, Hanawa K. 2001. Trajectory of mesoscale eddies in the kuroshio recirculation region. Journal of Oceanography, 57(4): 471–480.

    Article  Google Scholar 

  • Faghmous J H, Frenger I, Yao Y S, Warmka R, Lindell A, Kumar V. 2015. A daily global mesoscale ocean eddy dataset from satellite altimetry. Scientific Data, 2: 150028.

    Article  Google Scholar 

  • Gruber N, Lachkar Z, Frenzel H, Marchesiello P, Münnich M, McWilliams J C, Nagai T, Plattner G K. 2011. Eddy-induced reduction of biological production in eastern boundary upwelling systems. Nature Geoscience, 4(11): 787–792.

    Article  Google Scholar 

  • Hu D, Chen X, Mao K F, Teng J, Li Y, Peng X D. 2018. Statistical Characteristics of mesoscale eddies near the Kuroshio extension region. Oceanologia et Limnologia Sinica, 49(3): 497–511. (in Chinese with English abstract)

    Google Scholar 

  • Hu J Y, Gan J P, Sun Z Y, Zhu J, Dai M H. 2011. Observed three-dimensional structure of a cold eddy in the southwestern South China Sea. Journal of Geophysical Research: Oceans, 116(C5): C05016.

    Article  Google Scholar 

  • Isern-Fontanet J, García-Ladona E, Font J. 2010. Identification of marine eddies from altimetric maps. Journal of Atmospheric and Oceanic Technology, 20(5): 772–778.

    Article  Google Scholar 

  • Itoh S, Yasuda I. 2010. Water mass structure of warm and cold anticyclonic eddies in the western boundary region of the Subarctic North Pacific. Journal of Physical Oceanography, 40(12): 2 624–2 642.

    Article  Google Scholar 

  • Johannessen JA, Sandven S, Lygre K, Svendsen E, Johannessen O M. 1989. Three-dimensional structure of mesoscale eddies in the Norwegian coastal current. Journal of Physical Oceanography, 19(1): 3–19.

    Article  Google Scholar 

  • Johnson G C, McTaggart K E. 2010. Equatorial Pacific 13°C water eddies in the eastern subtropical South Pacific Ocean. Journal of Physical Oceanography, 40(1): 226–236.

    Article  Google Scholar 

  • Li Q Y, Sun L, Lin S F. 2016. GEM: a dynamic tracking model for mesoscale eddies in the ocean. Ocean Science, 12(6): 1 249–1 267.

    Article  Google Scholar 

  • Li S F, Wang S X, Zhang F M, Wang Y H. 2019. Constructing the three-dimensional structure of an anticyclonic eddy in the South China Sea using multiple underwater gliders. Journal of Atmospheric and Oceanic Technology, 36(12): 2 449–2 470.

    Article  Google Scholar 

  • Li S F, Zhang F M, Wang S X, Wang Y H, Yang S Q. 2020. Constructing the three-dimensional structure of an anticyclonic eddy with the optimal configuration of an underwater glider network. Applied Ocean Research, 95: 101893.

    Article  Google Scholar 

  • Lin X Y, Dong C M, Chen D, Liu Y, Yang J S, Zou B, Guan Y P. 2015. Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output. Deep Sea Research Part I: Oceanographic Research Papers, 99: 46–64.

    Article  Google Scholar 

  • Liu Y J, Chen G, Sun M, Liu S, Tian F L. 2016. A parallel SLA-based algorithm for global mesoscale eddy identification. Journal of Atmospheric and Oceanic Technology, 33(12): 2 743–2 754.

    Article  Google Scholar 

  • Ma J, Xu H M, Dong C M, Lin P F, Liu Y. 2015. Atmospheric responses to oceanic eddies in the Kuroshio Extension region. Journal of Geophysical Research: Atmosphere, 120(13): 6 313–6 330.

    Article  Google Scholar 

  • Ma X H, Jing Z, Chang P, Liu X, Montuoro R, Small R J, Bryan F O, Greatbatch R J, Brandt P, Wu D X, Lin X P, Wu L X. 2016. Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535(7613): 533–537.

    Article  Google Scholar 

  • Mason E, Pascual A, McWilliams J C. 2014. A new sea surface height-based code for oceanic mesoscale eddy tracking. Journal of Atmospheric and Oceanic Technology, 31(5): 1 181–1 188.

    Article  Google Scholar 

  • Miyazawa Y, Guo X Y, Yamagata T. 2010. Roles of mesoscale eddies in the Kuroshio paths. Journal of Physical Oceanography, 34(10): 2 203–2 222.

    Article  Google Scholar 

  • Nencioli F, Dong C M, Dickey T, Washburn L, McWilliams J C. 2010. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. Journal of Atmospheric and Oceanic Technology, 27(3): 564–579.

    Article  Google Scholar 

  • Okubo A. 1970. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep Sea Research and Oceanographic Abstracts, 17(3): 445–454.

    Article  Google Scholar 

  • Penven P, Echevin V, Pasapera J, Colas F, Tam J. 2005. Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System: a modeling approach. Journal of Geophysical Research: Oceans, 110(C10): C10021.

    Article  Google Scholar 

  • Qiu B, Chen S M. 2010. Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system. Deep Sea Research Part II: Topical Studies in Oceanography, 57(13–14): 1 098–1 110.

    Article  Google Scholar 

  • Schlax M G, Chelton D B. 2016. The “growing method” of eddy identification and tracking in two and three dimensions.

  • Sun M, Tian F L, Liu Y J, Chen G. 2017. An improved automatic algorithm for global eddy tracking using satellite altimeter data. Remote Sensing, 9(3): 206.

    Article  Google Scholar 

  • Wang Q Y. 2017. Three-dimensional structure of mesoscale eddies in the western tropical Pacific as revealed by a high-resolution ocean simulation. Science China Earth Sciences, 60(9): 1 719–1 731.

    Article  Google Scholar 

  • Weiss J. 1991. The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D: Nonlinear Phenomena, 48(2–3): 273–294.

    Article  Google Scholar 

  • Xia C S, Jung K T, Wang G S, Yin X Q, Guo J S. 2016. Case study on the three-dimensional structure of meso-scale eddy in the South China Sea based on a high-resolution model. Acta Oceanologica Sinica, 35(2): 29–38.

    Article  Google Scholar 

  • Xiu P, Chai F, Shi L, Xue H J, Chao Y. 2010. A census of eddy activities in the South China Sea during 1993–2007. Journal of Geophysical Research: Oceans, 115(C3): C03012.

    Article  Google Scholar 

  • Yang G, Wang F, Li Y L, Lin P F. 2013. Mesoscale eddies in the northwestern subtropical Pacific Ocean: statistical characteristics and three-dimensional structures. Journal of Geophysical Research: Oceans, 118(4): 1 906–1 925.

    Article  Google Scholar 

  • Zhang Z G, Wang W, Qiu B. 2014. Oceanic mass transport by mesoscale eddies. Science, 345(6194): 322–324.

    Article  Google Scholar 

  • Zhang Z G, Zhang Y, Wang W, Huang R X. 2013. Universal structure of mesoscale eddies in the ocean. Geophysical Research Letters, 40(14): 3 677–3 681.

    Article  Google Scholar 

  • Zhang Z W, Tian J W, Qiu B, Zhao W, Chang P, Wu D X, Wan X Q. 2016. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Scientific Reports, 6: 24349.

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank the anonymous reviewers for their thorough reviews and constructive suggestions on a previous version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suqin Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, L., Tian, F., Xu, S. et al. Three-dimensional mesoscale eddy identification and tracking algorithm based on pressure anomalies. J. Ocean. Limnol. 39, 2153–2166 (2021). https://doi.org/10.1007/s00343-021-0309-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-021-0309-5

Keyword

Navigation