Skip to main content
Log in

Contrasting patterns of free-living bacterioplankton diversity in macrophyte-dominated versus phytoplankton blooming regimes in Dianchi Lake, a shallow lake in China

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Freshwater shallow lakes typically exhibit two alternative stable states under certain nutrient loadings: macrophyte-dominated and phytoplankton-dominated water regimes. An ecosystem regime shift from macrophytes to phytoplankton blooming typically reduces the number of species of invertebrates and fishes and results in the homogenization of communities in freshwater lakes. We investigated how microbial biodiversity has responded to a shift of the ecosystem regime in Dianchi Lake, which was previously fully covered with submerged macrophytes but currently harbors both ecological states. We observed marked divergence in the diversity and community composition of bacterioplankton between the two regimes. Although species richness, estimated as the number of operational taxonomic units and phylogenetic diversity (PD), was higher in the phytoplankton dominated ecosystem after this shift, the dissimilarity of bacterioplankton community across space decreased. This decrease in beta diversity was accompanied by loss of planktonic bacteria unique to the macrophyte-dominated ecosystem. Mantel tests between bacterioplankton community distances and Euclidian distance of environmental parameters indicated that this reduced bacterial community differentiation primarily reflected the loss of environmental niches, particularly in the macrophyte regime. The loss of this small-scale heterogeneity in bacterial communities should be considered when assessing long-term biodiversity changes in response to ecosystem regime conversions in freshwater lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balata D, Piazzi L, Benedetti-Cecchi L. 2007. Sediment disturbance and loss of beta diversity on subtidal rocky reefs. Ecology, 88 (10): 2455–2461.

    Article  Google Scholar 

  • Brunberg A K. 1999. Contribution of bacteria in the mucilage of Microcystis spp. (Cyanobacteria) to benthic and pelagic bacterial production in a hypereutrophic lake. FEMS Microbiol. Ecol., 29 (1): 13–22.

    Google Scholar 

  • Caporaso J G, Lauber C L, Walters W A et al. 2012. Ultra-highthroughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J., 6 (8): 1621–1624.

    Article  Google Scholar 

  • Chase J M, Kraft N J B, Smith K G, Vellend M, Inouye B D. 2011. Using null models to disentangle variation in community dissimilarity from variation in a-diversity. Ecosphere, 2 (2): 1–11.

    Article  Google Scholar 

  • Crump B C, Amaral-Zettler L A, Kling G W. 2012. Microbial diversity in arctic freshwaters is structured by inoculation of microbes from soils. ISME J., 6 (9): 1629–1639.

    Article  Google Scholar 

  • Donohue I, Jackson A L, Pusch M T, Irvine K. 2009. Nutrient enrichment homogenizes lake benthic assemblages at local and regional scales. Ecology, 90 (12): 3470–3477.

    Article  Google Scholar 

  • Dudgeon D, Arthington A H, Gessner M O et al. 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev., 81 (2): 163–182.

    Article  Google Scholar 

  • Edgar R C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods, 10 (10): 996–998.

    Article  Google Scholar 

  • Eiler A, Bertilsson S. 2004. Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environ. Microbiol., 6 (12): 1228–1243.

    Article  Google Scholar 

  • Faith D P. 1992. Conservation evaluation and phylogenetic diversity. Biol. Conserv., 61 (1): 1–10.

    Article  Google Scholar 

  • Gallego I, Davidson T A, Jeppesen E, Pérez-Martínez C, Fuentes-Rodríguez F, Juan M, Casas J J. 2014. Disturbance from pond management obscures local and regional drivers of assemblages of primary producers. Freshwater Biol., 59 (7): 1406–1422.

    Article  Google Scholar 

  • Good I J. 1953. The population frequencies of species and the estimation of population parameters. Biometrika, 40 (3-4): 237–264.

    Article  Google Scholar 

  • Haukka K, Kolmonen E, Hyder R, Hietala J, Vakkilainen K, Kairesalo T, Haario H, Sivonen K. 2006. Effect of nutrient loading on bacterioplankton community composition in lake mesocosms. Microb. Ecol., 51 (2): 137–146.

    Article  Google Scholar 

  • He D, Ren L J, Wu Q L. 2012. Epiphytic bacterial communities on two common submerged macrophytes in Taihu Lake: diversity and host-specificity. Chin. J. Oceanol. Limn ol., 30 (2): 237–247.

    Article  Google Scholar 

  • He D, Ren L J, Wu Q L. 2014. Contrasting diversity of epibiotic bacteria and surrounding bacterioplankton of a common submerged macrophyte, Potamogeton crispus, in freshwater lakes. FEMS Microbiol. Ecol., 90 (3): 551–562.

    Article  Google Scholar 

  • Horner-Devine M C, Leibold M A, Smith V H, Bohannan B J M. 2003. Bacterial diversity patterns along a gradient of primary productivity. Ecol. Lett., 6 (7): 613–622.

    Article  Google Scholar 

  • Jeppesen E, Jensen J P, Søndergaard M, Lauridsen T, Pedersen L J, Jensen L. 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia, 342-343: 151–164.

    Article  Google Scholar 

  • Jespersen A M, Christoffersen K. 1987. Measurements of chlorophyll a from phytoplankton using ethanol as extraction solvent. Archiv für Hydrobiologie, 109 (3): 445–454.

    Google Scholar 

  • Jones S E, Cadkin T A, Newton R J, McMahon K D. 2012. Spatial and temporal scales of aquatic bacterial beta diversity. Front Microbiol., 3: 318.

    Article  Google Scholar 

  • Legendre P, Legendre L F. 2012. Numerical Ecology. 3rd ed. Elsevier Science, Amsterdam.

    Google Scholar 

  • Lindström E S, Bergström A K. 2004. Influence of inlet bacteria on bacterioplankton assemblage composition in lakes of different hydraulic retention time. Limnol. Oceanogr., 49 (1): 125–136.

    Article  Google Scholar 

  • Liu L M, Yang J, Lv H, Yu Z. 2014. Synchronous dynamics and correlations between bacteria and phytoplankton in a subtropical drinking water reservoir. FEMS Microbiol. Ecol., 90 (1): 126–138.

    Article  Google Scholar 

  • Logares R, Lindström E S, Langenheder S, Logue J B, Paterson H, Laybourn-Parry J, Rengefors K, Tranvik L, Bertilsson S. 2013. Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME J., 7 (5): 937–948.

    Article  Google Scholar 

  • Ludwig W, Strunk O, Westram R et al. 2004. ARB: a software environment for sequence data. Nucl. Acids Res., 32 (4): 1363–1371.

    Article  Google Scholar 

  • Maloney K O, Munguia P, Mitchell R M. 2011. Anthropogenic disturbance and landscape patterns affect diversity patterns of aquatic benthic macroinvertebrates. Journal of the North American Benthological Society, 30 (1): 284–295.

    Article  Google Scholar 

  • Newton R J, Jones S E, Eiler A, McMahon K D, Bertilsson S. 2011. A guide to the natural history of freshwater lake bacteria. Microbiol. Mol. Biol. Rev., 75 (1): 14–49.

    Article  Google Scholar 

  • Oksanen J, Blanchet F G, Kindt R, Legendre P, Minchin P R, O'Hara R, Simpson G L, Solymos P, Stevens M H H, Wagner H. 2013. vegan: community ecology package. R package version 2, http://CRAN.R-project.org/ package=vegan. Accessed on 2015-01-01.

  • Olden J D, PoffN L. 2004. Ecological processes driving biotic homogenization: testing a mechanistic model using fish faunas. Ecology, 85 (7): 1867–1875.

    Article  Google Scholar 

  • Passy S I, Blanchet F G. 2007. Algal communities in humanimpacted stream ecosystems suffer beta-diversity decline. Diversity and Distributions, 13 (6): 670–679.

    Article  Google Scholar 

  • Price M N, Dehal P S, Arkin A P. 2010. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One, 5 (3): e9490.

    Article  Google Scholar 

  • Rice E W, Baird R B, Eaton A D, Clesceri L S. 2012. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington DC.

    Google Scholar 

  • Rodrigues J L M, Pellizari V H, Mueller R, et al. 2013. Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc. Natl. Acad. Sci. U. S. A., 110 (3): 988–993.

    Article  Google Scholar 

  • Roesch L F, Fulthorpe R R, Riva A, Casella G, Hadwin A K, Kent A D, Daroub S H, Camargo F A, Farmerie W G, Triplett E W. 2007. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J., 1 (4): 283–290.

    Google Scholar 

  • Scheffer M, Hosper S H, Meijer M L, Moss B, Jeppesen E. 1993. Alternative equilibria in shallow lakes. Trends Ecol. Evol., 8 (8): 275–279.

    Article  Google Scholar 

  • Šimek K, Kasalický V, Hornák K, Hahn M W, Weinbauer M G. 2010. Assessing niche separation among coexisting Limnohabitans strains through interactions with a competitor, viruses, and a bacterivore. Appl. Environ. Microbiol., 76 (5): 1406–1416.

    Article  Google Scholar 

  • Van der Gucht K, Cottenie K, Muylaert K et al. 2007. The power of species sorting: local factors drive bacterial community composition over a wide range of spatial scales. Proc. Natl. Acad. Sci. U. S. A., 104 (51): 20404–20409.

    Article  Google Scholar 

  • Van der Gucht K, Sabbe K, de Meester L, Vloemans N, Zwart G, Gillis M, Vyverman W. 2001. Contrasting bacterioplankton community composition and seasonal dynamics in two neighbouring hypertrophic freshwater lakes. Environ. Microbiol., 3 (11): 680–690.

    Article  Google Scholar 

  • Wang L Z, Liu Y D, Chen L, Xiao B D, Liu J T, Wu Q L. 2007a. Benthic macroinvertebrate communities in Dianchi Lake Yunnan and assessment of its water. Acta Hydrob. Sin., 31 (4): 590–593. (in Chinese with English abstract)

    Google Scholar 

  • Wang Q, Garrity G M, Tiedje J M, Cole J R. 2007b. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol., 73 (16): 5261–5267.

    Article  Google Scholar 

  • Wang S M, Dou H S. 1998. Lakes in China. Science Press, Beijing, China. (in Chinese)

  • Wetzel R G, Søndergaard M. 1998. Role of submerged macrophytes for the microbial community and dynamics of dissolved organic carbon in aquatic ecosystems. In: Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K eds. The Structuring Role of Submerged Macrophytes in Lakes. Springer Press, New York. p.133–148.

    Chapter  Google Scholar 

  • Wu Q L, Zwart G, Schauer M, Kamst-van Agterveld M P, Hahn M W. 2006. Bacterioplankton community composition along a salinity gradient of sixteen highmountain lakes located on the Tibetan Plateau, China. Appl. Environ. Microbiol., 72 (8): 5478–5485.

    Article  Google Scholar 

  • Wu Q L, Zwart G, Wu J, Kamst-van Agterveld M P, Liu S J, Hahn M W. 2007. Submersed macrophytes play a key role in structuring bacterioplankton community composition in the large, shallow, subtropical Taihu Lake, China. Environ. Microbiol., 9 (11): 2765–2774.

    Article  Google Scholar 

  • Yuan Y, Chen C, Liang B et al. 2014. Fine-tuning key parameters of an integrated reactor system for the simultaneous removal of COD, sulfate and ammonium and elemental sulfur reclamation. J. Hazard. Mate r., 269: 56–67.

    Article  Google Scholar 

  • Zapala M A, Schork N J. 2006. Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables. Proc. Natl. Acad. Sci. U. S. A., 103 (51): 19430–19435.

    Article  Google Scholar 

  • Zeng J, Bian Y Q, Xing P, Wu Q L. 2012. Macrophyte species drive the variation of bacterioplankton community composition in a shallow freshwater lake. Appl. Environ. Microbiol., 78 (1): 177–184.

    Article  Google Scholar 

  • Zhao D Y, Liu P, Fang C, Sun Y M, Zeng J, Wang J Q, Ma T, Xiao Y H, Wu Q L. 2013. Submerged macrophytes modify bacterial community composition in sediments in a large, shallow, freshwater lake. Canadian Journal of Microbiology, 59 (4): 237–244.

    Article  Google Scholar 

  • Zhu G B, Wang S Y, Wang W D et al. 2013. Hotspots of anaerobic ammonium oxidation at land-freshwater interfaces. Nat. Geosci., 6 (2): 103–107.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Min Pan from the Institute of Dianchi Lake Ecology for assistance with field sampling and the collection of original data for Lake Dianchi. The authors also thank Dr. Yu Shi and Dan He for assistance with the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Xing  (邢鹏) or Qinglong Wu  (吴庆龙).

Additional information

Supported by the National Natural Science Foundation of China (Nos. U1202231, 31225004) and the National Science Foundation for Young Scientists of China (No. 31200383)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, H., Xing, P. et al. Contrasting patterns of free-living bacterioplankton diversity in macrophyte-dominated versus phytoplankton blooming regimes in Dianchi Lake, a shallow lake in China. Chin. J. Ocean. Limnol. 35, 336–349 (2017). https://doi.org/10.1007/s00343-016-5277-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-016-5277-9

Keywords

Navigation